Implementing Poincaré Sections for a Chaotic Relaxation Oscillator

Autor: Jean-Marc Ginoux, Stefano Euzzor, F. T. Arecchi, R. Meucci, A. Di Garbo
Přispěvatelé: Laboratoire d'Informatique et Systèmes (LIS), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Mathematical Modelling of Natural Phenomena
Mathematical Modelling of Natural Phenomena, 2020, ⟨10.1109/TCSII.2019.2924475⟩
IEEE Transactions on Circuits and Systems II: Express Briefs
IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67 (2), pp.395-399. ⟨10.1109/TCSII.2019.2924475⟩
IEEE Transactions on Circuits and Systems II: Express Briefs, Institute of Electrical and Electronics Engineers, 2020, 67 (2), pp.395-399. ⟨10.1109/TCSII.2019.2924475⟩
Mathematical Modelling of Natural Phenomena, EDP Sciences, 2020, ⟨10.1109/TCSII.2019.2924475⟩
ISSN: 0973-5348
1760-6101
1549-7747
1558-3791
DOI: 10.1109/TCSII.2019.2924475⟩
Popis: We propose an electronic implementation to record Poincare sections of dynamical systems exhibiting chaos. Poincare sections are obtained by sampling and holding the maxima of a sequence of pulses of a chaotic relaxation oscillator versus the same temporal sequence shifted by one unit. By using these sections we are able to detail the transition to chaos via torus breakdown.
Databáze: OpenAIRE