Thermal hysteresis of stress and strain in spin-crossover@polymer composites: towards a rational design of actuator devices

Autor: José Elias Angulo-Cervera, Mario Piedrahita-Bello, Baptiste Martin, Seyed Ehsan Alavi, William Nicolazzi, Lionel Salmon, Gábor Molnár, Azzedine Bousseksou
Přispěvatelé: Laboratoire de chimie de coordination (LCC), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), European Project: 101019522,https://cordis.europa.eu/project/id/101019522/fr,E-MOTION(2021)
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Materials Advances
Materials Advances, 2022, 3 (12), pp.5131-5137. ⟨10.1039/D2MA00459C⟩
ISSN: 2633-5409
DOI: 10.1039/D2MA00459C⟩
Popis: International audience; Polymer composites of molecular spin crossover complexes have emerged as promising mechanical actuator materials, but their effective thermomechanical properties remain elusive. In this work, we investigated a series of iron(II)-triazole@P(VDF-TrFE) particulate composites using a tensile testing stage with temperature control. From these measurements, we assessed the temperature dependence of the Young's modulus as well as the free deformation and blocking stress, associated with the thermally-induced spin transition. The results denote that the expansion of the particles at the spin transition is effectively transferred to the macroscopic composite material, providing ca. 1–3% axial strain for 25% particle load. This strain is in excess of the ‘neat’ particle strain, which we attribute to particle-matrix mechanical coupling. On the other hand, the blocking stress (∼1 MPa) appears reduced by the softening of the composite around the spin transition temperature.
Databáze: OpenAIRE