Bifurcation structures in a 2D exponential diffeomorphism with Allee effect

Autor: J. Leonel Rocha, Abdel-Kaddous Taha
Rok vydání: 2019
Předmět:
Zdroj: Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
ISSN: 1573-269X
0924-090X
DOI: 10.1007/s11071-019-04759-3
Popis: An embedding of one-dimensional generic growth functions into a two-dimensional diffeomorphism is considered. This family of unimodal maps naturally incorporates a key item of ecological and biological research: the Allee effect. Consequently, the presence of this species extinction phenomenon leads us to a new definition of bifurcation for this two-dimensional exponential diffeomorphism: Allee’s effect bifurcation. The stability and the nature of the fixed points of the two-dimensional diffeomorphism are analyzed, by studying the corresponding contour lines. Fold and flip bifurcation structures of this exponential diffeomorphism are investigated, in which there are flip codimension-2 bifurcation points and cusp points, when some parameters evolve. Numerical studies are included.
Databáze: OpenAIRE