Motional Fock states for quantum-enhanced amplitude and phase measurements with trapped ions

Autor: Augusto Smerzi, Jan C. Heip, Manuel Gessner, Fabian Wolf, Chunyan Shi, Luca Pezzè, Klemens Hammerer, Marius Schulte, Piet O. Schmidt
Přispěvatelé: Laboratoire de Physique Théorique de l'ENS (LPTENS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
0301 basic medicine
Atomic Physics (physics.atom-ph)
Science
squeezed states
spectroscopy
entanglement
oscillations
force
noise
mass
vacuum
General Physics and Astronomy
FOS: Physical sciences
02 engineering and technology
Quantum metrology
General Biochemistry
Genetics and Molecular Biology

Article
Physics - Atomic Physics
Fock space
03 medical and health sciences
Fock state
Vacuum energy
Quantum state
Physics::Atomic Physics
lcsh:Science
Quantum
Motional Fock states
Dewey Decimal Classification::500 | Naturwissenschaften
Physics
Condensed Matter::Quantum Gases
Quantum Physics
Multidisciplinary
Quantum limit
Quantum sensor
Quantum noise
quantum noise
Atomic and molecular interactions with photons
General Chemistry
021001 nanoscience & nanotechnology
[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]
030104 developmental biology
lcsh:Q
ddc:500
Atomic physics
0210 nano-technology
Quantum Physics (quant-ph)
Zdroj: Nature Communications 10 (2019), Nr. 1
Nature Commun.
Nature Commun., 2019, 10 (1), pp.2929. ⟨10.1038/s41467-019-10576-4⟩
Nature Communications, Vol 10, Iss 1, Pp 1-8 (2019)
Nature Communications
Nature communications 10 (2019): 2929–2929. doi:10.1038/s41467-019-10576-4
info:cnr-pdr/source/autori:Wolf, Fabian; Shi, Chunyan; Heip, Jan C.; Gessner, Manuel; Pezze, Luca; Smerzi, Augusto; Schulte, Marius; Hammerer, Klemens; Schmidt, Piet O./titolo:Motional Fock states for quantum-enhanced amplitude and phase measurements with trapped ions/doi:10.1038%2Fs41467-019-10576-4/rivista:Nature communications/anno:2019/pagina_da:2929/pagina_a:2929/intervallo_pagine:2929–2929/volume:10
Popis: The quantum noise of the vacuum limits the achievable sensitivity of quantum sensors. In non-classical measurement schemes the noise can be reduced to overcome this limitation. However, schemes based on squeezed or Schrödinger cat states require alignment of the relative phase between the measured interaction and the non-classical quantum state. Here we present two measurement schemes on a trapped ion prepared in a motional Fock state for displacement and frequency metrology that are insensitive to this phase. The achieved statistical uncertainty is below the standard quantum limit set by quantum vacuum fluctuations, enabling applications in spectroscopy and mass measurements.
Quantum metrology allows surpassing the standard quantum limit, but methods relying on squeezing require to know the orientation of the squeezed quadrature with respect to the signal. Here, instead, the authors propose a phase-insensitive Fock-state-based protocol, and demonstrate it using trapped ions.
Databáze: OpenAIRE