Swirling of vesicles: Shapes and dynamics in Poiseuille flow as a model of RBC microcirculation

Autor: Jinming Lyu, Paul G. Chen, Alexander Farutin, Marc Jaeger, Chaouqi Misbah, Marc Leonetti
Přispěvatelé: Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), ANR-18-CE06-0008,2DVISC,Des écoulements interfaciaux aux viscosités de surface(2018), ANR-11-LABX-0030,TEC XXI,Ingénierie de la Complexité : la mécanique et ses interfaces au service des enjeux sociétaux du 21iè(2011)
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Physical Review Fluids
Physical Review Fluids, 2023, 8 (2), pp.L021602. ⟨10.1103/PhysRevFluids.8.L021602⟩
ISSN: 2469-990X
DOI: 10.1103/PhysRevFluids.8.L021602⟩
Popis: International audience; We report on a systematic numerical exploration of the vesicle dynamics in a channel, which is a model of red blood cells in microcirculation. We find a spontaneous transition, called swirling, from straight motion with axisymmetric shape to a motion along a helix with a stationary deformed shape that rolls on itself and spins around the flow direction. We also report on a planar oscillatory motion of the mass center, called three-dimensional snaking for which the shape deforms periodically. Both emerge from supercritical pitchfork bifurcation with the same threshold. The universality of these oscillatory dynamics emerges from Hopf bifurcations with two order parameters. These two oscillatory dynamics are put in the context of vesicle shape and dynamics in the parameter space of reduced volume v, capillary number, and confinement. Phase diagrams are established for v = 0.95, v = 0.9, and v = 0.85 showing that oscillatory dynamics appears if the vesicle is sufficiently deflated. Stationary shapes (parachute/bullet/peanut, croissant, and slipper) are fixed points, while swirling and snaking are characterized by two limit cycles.
Databáze: OpenAIRE