Activity of Cerebellar Nuclei Neurons Correlates with ZebrinII Identity of Their Purkinje Cell Afferents

Autor: Chris I. De Zeeuw, Simona V. Gornati, Martijn Schonewille, Avraham M. Libster, Freek E. Hoebeek, Gerrit Cornelis Beekhof, Cathrin B. Canto
Přispěvatelé: Netherlands Institute for Neuroscience (NIN), Neurosciences
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Cells, 10(10):2686. Multidisciplinary Digital Publishing Institute (MDPI)
Cells
Volume 10
Issue 10
Cells, Vol 10, Iss 2686, p 2686 (2021)
ISSN: 2073-4409
Popis: Purkinje cells (PCs) in the cerebellar cortex can be divided into at least two main subpopulations: one subpopulation that prominently expresses ZebrinII (Z+), and shows a relatively low simple spike firing rate, and another that hardly expresses ZebrinII (Z–) and shows higher baseline firing rates. Likewise, the complex spike responses of PCs, which are evoked by climbing fiber inputs and thus reflect the activity of the inferior olive (IO), show the same dichotomy. However, it is not known whether the target neurons of PCs in the cerebellar nuclei (CN) maintain this bimodal distribution. Electrophysiological recordings in awake adult mice show that the rate of action potential firing of CN neurons that receive input from Z+ PCs was consistently lower than that of CN neurons innervated by Z– PCs. Similar in vivo recordings in juvenile and adolescent mice indicated that the firing frequency of CN neurons correlates to the ZebrinII identity of the PC afferents in adult, but not postnatal stages. Finally, the spontaneous action potential firing pattern of adult CN neurons recorded in vitro revealed no significant differences in intrinsic pacemaking activity between ZebrinII identities. Our findings indicate that all three main components of the olivocerebellar loop, i.e., PCs, IO neurons and CN neurons, operate at a higher rate in the Z– modules.
Databáze: OpenAIRE