Semisimple Hopf actions on Weyl algebras
Autor: | Pavel Etingof, Chelsea Walton, Juan Cuadra |
---|---|
Přispěvatelé: | Massachusetts Institute of Technology. Department of Mathematics, Etingof, Pavel I, Walton, Chelsea |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Pure mathematics
Weyl algebra Group (mathematics) General Mathematics Modulo 010102 general mathematics Mathematics::Rings and Algebras Prime number Zero (complex analysis) Mathematics - Rings and Algebras Hopf algebra 01 natural sciences Rings and Algebras (math.RA) Mathematics::Quantum Algebra Mathematics - Quantum Algebra 0103 physical sciences FOS: Mathematics Division algebra Quantum Algebra (math.QA) 010307 mathematical physics 0101 mathematics Algebraically closed field Mathematics::Representation Theory Mathematics |
Zdroj: | arXiv |
Popis: | We study actions of semisimple Hopf algebras H on Weyl algebras A over an algebraically closed field of characteristic zero. We show that the action of H on A must factor through a group action; in other words, if H acts inner faithfully on A, then H is cocommutative. The techniques used include reduction modulo a prime number and the study of semisimple cosemisimple Hopf actions on division algebras. National Science Foundation (U.S.) (Grant DMS-1000113) National Science Foundation (U.S.) (Grant DMS-1401207) |
Databáze: | OpenAIRE |
Externí odkaz: |