The Adiabatic Theorem and Linear Response Theory for Extended Quantum Systems

v2 minor typos, change in abstract, references; v2-->v3 remark added after main theorem on p.6; v3-->v4 Lemma 4.8 added, minor changes, one additional reference -->
ISSN: 1432-0916
0010-3616
DOI: 10.1007/s00220-018-3117-9
Přístupová URL adresa: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f2fd4d79b753d06b27e6d2c5505abde3
https://doi.org/10.1007/s00220-018-3117-9
Rights: OPEN
Přírůstkové číslo: edsair.doi.dedup.....f2fd4d79b753d06b27e6d2c5505abde3
Autor: Sven Bachmann, Wojciech De Roeck, Martin Fraas
Rok vydání: 2018
Předmět:
Zdroj: Communications in Mathematical Physics. 361:997-1027
ISSN: 1432-0916
0010-3616
DOI: 10.1007/s00220-018-3117-9
Popis: The adiabatic theorem refers to a setup where an evolution equation contains a time-dependent parameter whose change is very slow, measured by a vanishing parameter $\epsilon$. Under suitable assumptions the solution of the time-inhomogenous equation stays close to an instantaneous fixpoint. In the present paper, we prove an adiabatic theorem with an error bound that is independent of the number of degrees of freedom. Our setup is that of quantum spin systems where the manifold of ground states is separated from the rest of the spectrum by a spectral gap. One important application is the proof of the validity of linear response theory for such extended, genuinely interacting systems. In general, this is a long-standing mathematical problem, which can be solved in the present particular case of a gapped system, relevant e.g.~for the integer quantum Hall effect.
Comment: 25 pages; v1-->v2 minor typos, change in abstract, references; v2-->v3 remark added after main theorem on p.6; v3-->v4 Lemma 4.8 added, minor changes, one additional reference
Databáze: OpenAIRE