Temporal Conditional Preference Queries on Streams
Autor: | Maria Camila Nardini Barioni, Cyril Labbé, Marcos Roberto Ribeiro, Sandra de Amo, Claudia Roncancio |
---|---|
Přispěvatelé: | Faculdade de Computação, Universidade Federal de Uberlândia - UFU, Systèmes d’Information - inGénierie et Modélisation Adaptables (SIGMA), Laboratoire d'Informatique de Grenoble (LIG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Information retrieval
[INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB] Data stream mining Computer science 02 engineering and technology STREAMS Query language Preference Preference queries Temporal preferences 020204 information systems 0202 electrical engineering electronic engineering information engineering 020201 artificial intelligence & image processing Data streams |
Zdroj: | 28th International Conference, DEXA 2017 Database and Expert Systems Applications 28th International Conference, DEXA 2017 Database and Expert Systems Applications, 2017, Lyon, France. pp.143-158 Lecture Notes in Computer Science ISBN: 9783319644677 DEXA (1) |
Popis: | International audience; Preference queries on data streams have been proved very useful for many application areas. Despite of the existence of research studies dedicated to this issue, they lack to support the use of an important implicit information of data streams, the temporal preferences. In this paper we define new operators and an algorithm for the efficient evaluation of temporal conditional preference queries on data streams. We also demonstrate how the proposed operators can be translated to the Continuous Query Language (CQL). The experiments performed show that our proposed operators have considerably superior performance when compared to the equivalent operations in CQL. |
Databáze: | OpenAIRE |
Externí odkaz: |