Temporal Conditional Preference Queries on Streams

Autor: Maria Camila Nardini Barioni, Cyril Labbé, Marcos Roberto Ribeiro, Sandra de Amo, Claudia Roncancio
Přispěvatelé: Faculdade de Computação, Universidade Federal de Uberlândia - UFU, Systèmes d’Information - inGénierie et Modélisation Adaptables (SIGMA), Laboratoire d'Informatique de Grenoble (LIG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: 28th International Conference, DEXA 2017 Database and Expert Systems Applications
28th International Conference, DEXA 2017 Database and Expert Systems Applications, 2017, Lyon, France. pp.143-158
Lecture Notes in Computer Science ISBN: 9783319644677
DEXA (1)
Popis: International audience; Preference queries on data streams have been proved very useful for many application areas. Despite of the existence of research studies dedicated to this issue, they lack to support the use of an important implicit information of data streams, the temporal preferences. In this paper we define new operators and an algorithm for the efficient evaluation of temporal conditional preference queries on data streams. We also demonstrate how the proposed operators can be translated to the Continuous Query Language (CQL). The experiments performed show that our proposed operators have considerably superior performance when compared to the equivalent operations in CQL.
Databáze: OpenAIRE