Ellipticity loss analysis for tangent moduli deduced from a large strain elastic–plastic self-consistent model

Autor: Farid Abed-Meraim, Jean-Paul Lorrain, Tarak Ben Zineb, Xavier Lemoine, Gérald Franz, Marcel Berveiller
Přispěvatelé: Laboratoire de physique et mécanique des matériaux (LPMM), Université Paul Verlaine - Metz (UPVM)-Institut National Polytechnique de Lorraine (INPL)-Ecole Nationale d'Ingénieurs de Metz (ENIM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des technologies innovantes - UR UPJV 3899 (LTI), Université de Picardie Jules Verne (UPJV), Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Laboratoire Énergies et Mécanique Théorique et Appliquée (LEMTA ), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), ArcelorMittal Research
Jazyk: angličtina
Rok vydání: 2009
Předmět:
Constitutive equation
[SPI.MECA.MSMECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Materials and structures in mechanics [physics.class-ph]
02 engineering and technology
DUCTILE SINGLE-CRYSTALS
MATERIAL DAMAGE
[SPI.MAT]Engineering Sciences [physics]/Materials
0203 mechanical engineering
[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]
General Materials Science
Mécanique: Mécanique des matériaux [Sciences de l'ingénieur]
Mécanique: Mécanique des structures [Sciences de l'ingénieur]
Ductility
Mécanique [Sciences de l'ingénieur]
Mécanique: Mécanique des solides [Sciences de l'ingénieur]
Génie des procédés [Sciences de l'ingénieur]
Tangent
CONSTITUTIVE RELATIONS
Mechanics
SHEET-METAL
[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]
021001 nanoscience & nanotechnology
DISLOCATION DENSITIES
[SPI.MECA.GEME]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanical engineering [physics.class-ph]
020303 mechanical engineering & transports
Mechanics of Materials
Tangent modulus
0210 nano-technology
NUMERICAL-ANALYSIS
Materials science
HARDENING BEHAVIOR
Matériaux [Sciences de l'ingénieur]
Ellipticity Limit Diagram
[SPI.MECA.SOLID]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Solid mechanics [physics.class-ph]
Rice's criterion
Moduli
FORMING LIMIT DIAGRAMS
Condensed Matter::Materials Science
Mécanique: Génie mécanique [Sciences de l'ingénieur]
[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering
[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics
Viscoplasticity
Micro et nanotechnologies/Microélectronique [Sciences de l'ingénieur]
Mechanical Engineering
Numerical analysis
Scale transition
Mécanique: Matériaux et structures en mécanique [Sciences de l'ingénieur]
BCC POLYCRYSTALS
Crystallography
Deformation mechanism
[SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph]
Hardening (metallurgy)
LOCALIZED NECKING
Plastic instability
Zdroj: International Journal of Plasticity
International Journal of Plasticity, Elsevier, 2009, 25 (2), pp.205-238. ⟨10.1016/j.ijplas.2008.02.006⟩
ISSN: 0749-6419
DOI: 10.1016/j.ijplas.2008.02.006⟩
Popis: In order to investigate the impact of microstructures and deformation mechanisms on the ductility of materials, the criterion first proposed by Rice is applied to elastic–plastic tangent moduli derived from a large strain micromechanical model combined with a self-consistent scale-transition technique. This approach takes into account several microstructural aspects for polycrystalline aggregates: initial and induced textures, dislocation densities as well as softening mechanisms such that the behavior during complex loading paths can be accurately described.In order to significantly reduce the computing time, a new method drawn from viscoplastic formulations is introduced so that the slip system activity can be efficiently determined. The different aspects of the single crystal hardening (self and latent hardening, dislocation storage and annihilation, mean free path, etc.) are taken into account both by the introduction of dislocation densities per slip system as internal variables and the corresponding evolution equations. Comparisons are made with experimental results for single and dual-phase steels involving linear and complex loading paths. Rice’s criterion is then coupled and applied to this constitutive model in order to determine the ellipticity loss of the polycrystalline tangent modulus. This criterion, which does not need any additional “fitting” parameter, is used to build Ellipticity Limit Diagrams (ELDs).; International audience; In order to investigate the impact of microstructures and deformation mechanisms on the ductility of materials, the criterion first proposed by Rice is applied to elastic–plastic tangent moduli derived from a large strain micromechanical model combined with a self-consistent scale-transition technique. This approach takes into account several microstructural aspects for polycrystalline aggregates: initial and induced textures, dislocation densities as well as softening mechanisms such that the behavior during complex loading paths can be accurately described.In order to significantly reduce the computing time, a new method drawn from viscoplastic formulations is introduced so that the slip system activity can be efficiently determined. The different aspects of the single crystal hardening (self and latent hardening, dislocation storage and annihilation, mean free path, etc.) are taken into account both by the introduction of dislocation densities per slip system as internal variables and the corresponding evolution equations. Comparisons are made with experimental results for single and dual-phase steels involving linear and complex loading paths. Rice’s criterion is then coupled and applied to this constitutive model in order to determine the ellipticity loss of the polycrystalline tangent modulus. This criterion, which does not need any additional “fitting” parameter, is used to build Ellipticity Limit Diagrams (ELDs).
Databáze: OpenAIRE