Probabilistic modeling of the concept of anticipation in aviation

Autor: Bernard Claverie, Sylvain Hourlier, Christophe Bey, Ephraim Suhir, Sami Lini, Jean-Marc Salotti
Přispěvatelé: University of California [Santa Cruz] (UCSC), University of California, COGNITIQUE, Laboratoire de l'intégration, du matériau au système (IMS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1-Equipe Cognitique & Ingénierie Humaine - IMS (UMR 5218), Ecole Nationale Supérieure de Cognitique-Ecole Nationale Supérieure de Cognitique, Ecole Nationale Supérieure de Cognitique (ENSC), Institut Polytechnique de Bordeaux
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Theoretical Issues in Ergonomics Science
Theoretical Issues in Ergonomics Science, Taylor & Francis, 2014, pp.1-17. ⟨10.1080/1463922X.2014.895878⟩
Theoretical Issues in Ergonomics Science, Taylor & Francis, 2013, 16 (1), pp.69-85. ⟨10.1080/1463922X.2014.895878⟩
ISSN: 1463-922X
1464-536X
DOI: 10.1080/1463922X.2014.895878⟩
Popis: International audience; Two problems concerning anticipation effort as an important cognitive resource for improved avionics safety are addressed: (1) assessment of the probability that the random actual ('subjective') anticipation time is below the (also random) available ('objective') time and (2) evaluation of the likelihood of success of the random short-term anticipation from the predetermined (non-random) long-term anticipation. Unlike the traditional statistical approach, when experimentations are done first and are followed by statistical analyses, our novel concept suggests that probabilistic predictive modelling is done first and is followed by experimentation. The concept proceeds from the fundamental understanding that nobody and nothing is perfect and that the difference between a success and a failure in a particular effort, a situation, or a mission is, in effect, 'merely' the difference in the level of the never-zero probability of failure.
Databáze: OpenAIRE