Noncommutative geometry of phase space
Autor: | Maja Buric, John Madore |
---|---|
Rok vydání: | 2011 |
Předmět: |
High Energy Physics - Theory
Physics Tangent bundle Pure mathematics Physics and Astronomy (miscellaneous) Mathematics::Operator Algebras Duality (mathematics) FOS: Physical sciences Position and momentum space General Relativity and Quantum Cosmology (gr-qc) Extension (predicate logic) Noncommutative geometry General Relativity and Quantum Cosmology High Energy Physics - Theory (hep-th) Phase space Cotangent bundle Algebra over a field Mathematics::Symplectic Geometry |
Zdroj: | General Relativity and Gravitation. 43:3477-3495 |
ISSN: | 1572-9532 0001-7701 |
DOI: | 10.1007/s10714-011-1231-5 |
Popis: | A version of noncommutative geometry is proposed which is based on phase-space rather than position space. The momenta encode the information contained in the algebra of forms by a map which is the noncommutative extension of the duality between the tangent bundle and the cotangent bundle. Josh Goldberg Festschrift, 20 pages; a typo fixed |
Databáze: | OpenAIRE |
Externí odkaz: |