The classification of EEG signals using discretization-based entropy and the adaptive neuro-fuzzy inference system

Autor: Hekim, Mahmut
Přispěvatelé: Gaziosmanpaşa Üniversitesi, Hekim, Mahmut
Rok vydání: 2016
Předmět:
Zdroj: Volume: 24, Issue: 1 285-297
Turkish Journal of Electrical Engineering and Computer Science
ISSN: 1303-6203
1300-0632
DOI: 10.3906/elk-1306-164
Popis: A novel feature extraction called discretization-based entropy is proposed for use in the classification of EEG signals. To this end, EEG signals are decomposed into frequency subbands using the discrete wavelet transform (DWT), the coefficients of these subbands are discretized into the desired number of intervals using the discretization method, the entropy values of the discretized subbands are calculated using the Shannon entropy method, and these are then used as the inputs of the adaptive neuro-fuzzy inference system (ANFIS). The equal width discretization (EWD) and equal frequency discretization (EFD) methods are used for the discretization. In order to evaluate their performances in terms of classification accuracy, three different experiments are implemented using different combinations of healthy segments, epileptic seizure-free segments, and epileptic seizure segments. The experiments show that the EWD-based entropy approach achieves higher classification accuracy rates than the EFD-based entropy approach.
Databáze: OpenAIRE