Stability and Feasibility of State Constrained MPC without Stabilizing Terminal Constraints
Autor: | Lars Grüne, Karl Worthmann, Andrea Boccia |
---|---|
Přispěvatelé: | Department of Electrical and Electronic Engineering [London] (DEEE), Imperial College London, Mathematisches Institut [Bayreuth], Universität Bayreuth, European Project: 264735,EC:FP7:PEOPLE,FP7-PEOPLE-2010-ITN,SADCO(2011) |
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
Mathematical optimization
General Computer Science Mechanical Engineering Horizon Linear system Nonlinear control Optimal control Controllability Control and Systems Engineering Control theory Stability theory Bellman equation Kernel (statistics) [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] Electrical and Electronic Engineering Mathematics |
Zdroj: | Systems and Control Letters Systems and Control Letters, Elsevier, 2014, 72, pp.14-21. ⟨10.1016/j.sysconle.2014.08.002⟩ |
ISSN: | 0167-6911 1872-7956 |
DOI: | 10.1016/j.sysconle.2014.08.002⟩ |
Popis: | 23 p.; International audience; In this paper we investigate stability and recursive feasibility of a nonlinear receding horizon control scheme without terminal constraints and costs but imposing state and control constraints. Under a local controllability assumption we show that every level set of the infinite horizon optimal value function is contained in the basin of attraction of the asymptotically stable equilibrium for sufficiently large optimization horizon N. For stabilizable linear systems we show the same for any compact subset of the interior of the viability kernel. Moreover, estimates for the necessary horizon length N are given via an analysis of the optimal value function at the boundary of the viability kernel. |
Databáze: | OpenAIRE |
Externí odkaz: |