Machine Learning Accelerated Genetic Algorithms for Computational Materials Search

Autor: Steen Lysgaard, Paul C. Jennings, Jens Strabo Hummelshøj, Thomas Bligaard, Tejs Vegge
Rok vydání: 2018
Popis: A machine learning model is used as a surrogate fitness evaluator in a genetic algorithm (GA) optimization of the atomic distribution of Pt-Au nanoparticles. The machine learning accelerated genetic algorithm (MLaGA) yields a 50-fold reduction of required energy calculations compared to a traditional GA.
Databáze: OpenAIRE