Machine Learning Accelerated Genetic Algorithms for Computational Materials Search
Autor: | Steen Lysgaard, Paul C. Jennings, Jens Strabo Hummelshøj, Thomas Bligaard, Tejs Vegge |
---|---|
Rok vydání: | 2018 |
Popis: | A machine learning model is used as a surrogate fitness evaluator in a genetic algorithm (GA) optimization of the atomic distribution of Pt-Au nanoparticles. The machine learning accelerated genetic algorithm (MLaGA) yields a 50-fold reduction of required energy calculations compared to a traditional GA. |
Databáze: | OpenAIRE |
Externí odkaz: |