Shore points in dendroids and conical pointed hyperspaces
Autor: | Luis Montejano-Piembert, Isabel Puga-Espinosa |
---|---|
Rok vydání: | 1992 |
Předmět: |
Shore
Hilbert cube geography Sequence geography.geographical_feature_category Mathematical analysis dendroids Conical surface Conical pointed hyperspaces Whitney levels Combinatorics Hyperspace Cone (topology) Dendroid shore sets and shore points Continuum (set theory) Geometry and Topology Mathematics |
Zdroj: | Topology and its Applications. 46(1):41-54 |
ISSN: | 0166-8641 |
DOI: | 10.1016/0166-8641(92)90038-2 |
Popis: | If X is a continuum and μ a Whitney map for C(X), a subcontinuum Y of C(X) is μ-conical pointed if for some λ ∈[0, 1), the cone K(μ−1(λ) ⌢ Y) of μ−1(λ) ⌢ Y is homeomorphic with μ−1[λ, 1] ⌢ Y. This property generalizes the Roger's cone = hyperspace property. If X is a (smooth) dendroid, x ∈ X is a shore point if there is a sequence of subdendroids of X not containing x which converges to X. In this paper we give necessary and sufficient conditions on X, involving shore points, for Cp(X) to be μ-canonical pointed. |
Databáze: | OpenAIRE |
Externí odkaz: |