Shore points in dendroids and conical pointed hyperspaces

Autor: Luis Montejano-Piembert, Isabel Puga-Espinosa
Rok vydání: 1992
Předmět:
Zdroj: Topology and its Applications. 46(1):41-54
ISSN: 0166-8641
DOI: 10.1016/0166-8641(92)90038-2
Popis: If X is a continuum and μ a Whitney map for C(X), a subcontinuum Y of C(X) is μ-conical pointed if for some λ ∈[0, 1), the cone K(μ−1(λ) ⌢ Y) of μ−1(λ) ⌢ Y is homeomorphic with μ−1[λ, 1] ⌢ Y. This property generalizes the Roger's cone = hyperspace property. If X is a (smooth) dendroid, x ∈ X is a shore point if there is a sequence of subdendroids of X not containing x which converges to X. In this paper we give necessary and sufficient conditions on X, involving shore points, for Cp(X) to be μ-canonical pointed.
Databáze: OpenAIRE