Trade-off between bile resistance and nutritional competence drives Escherichia coli diversification in the mouse gut

Autor: Nadine Cerf-Bensussan, Dominique Rainteau, François Taddei, Sabine Rakotobe, Marianne De Paepe, Valérie Gaboriau-Routhiau
Přispěvatelé: Interactions de l'épithelium intestinal et du système immunitaire (UMR_S 793), Institut National de la Recherche Agronomique (INRA)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), MICrobiologie de l'ALImentation au Service de la Santé (MICALIS), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Inflammation intestinale, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Robustesse et évolvabilité de la vie (U1001), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Descartes - Paris 5 (UPD5), MDP was supported by the Fondation pour la Recherche Médicale (http://www.frm.org/)., Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Recherche Agronomique (INRA), Interactions de l'épithelium intestinal et du système immunitaire ( UMR_S 793 ), Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Recherche Agronomique ( INRA ), MICrobiologie de l'ALImentation au Service de la Santé humaine ( MICALIS ), Institut National de la Recherche Agronomique ( INRA ) -AgroParisTech, Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Robustesse et évolvabilité de la vie ( U1001 ), Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Université Paris Descartes - Paris 5 ( UPD5 ), Autard, Delphine
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Operon
Mutant
Genetic Fitness
MESH: Escherichia coli Proteins
Mice
MESH : Selection
Genetic

MESH: Animals
0303 health sciences
MESH : Trans-Activators
MESH: Escherichia coli
Escherichia coli Proteins
Microbiology and Parasitology
Bacterial
SDV:GEN
MESH: Transcription Factors
MESH : Multienzyme Complexes
Microbiologie et Parasitologie
MESH : Phenotype
[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology
Animals
Bacterial Outer Membrane Proteins
Bile Acids and Salts
Biodiversity
DNA-Binding Proteins
Escherichia coli
Flagella
Gastrointestinal Tract
Gene Expression Regulation
Immunity
Innate
Multienzyme Complexes
Mutation
Nutritional Physiological Phenomena
Phenotype
Selection
Genetic
Trans-Activators
Transcription Factors
MESH : DNA-Binding Proteins
MESH : Gene Expression Regulation
Bacterial

MESH: Phenotype
Microbiology
MESH: Flagella
MESH: Biodiversity
03 medical and health sciences
Genetics
[SDV.MP] Life Sciences [q-bio]/Microbiology and Parasitology
Molecular Biology
Biology
Ecology
Evolution
Behavior and Systematics

[SDV.GEN]Life Sciences [q-bio]/Genetics
MESH : Genetic Fitness
030306 microbiology
MESH: Bacterial Outer Membrane Proteins
Immunity
Innate

Colonisation
Regulon
MESH : Nutritional Physiological Phenomena
MESH: Gastrointestinal Tract
MESH : Gastrointestinal Tract
[ SDV.GEN ] Life Sciences [q-bio]/Genetics
Cancer Research
MESH : Escherichia coli
MESH : Transcription Factors
MESH: Selection
Genetic

[SDV.GEN] Life Sciences [q-bio]/Genetics
Gut flora
medicine.disease_cause
MESH: Multienzyme Complexes
MESH: Genetic Fitness
[ SDV.MP ] Life Sciences [q-bio]/Microbiology and Parasitology
MESH : Biodiversity
Genetics (clinical)
2. Zero hunger
Experimental evolution
MESH: Gene Expression Regulation
Bacterial

biology
MESH : Escherichia coli Proteins
MESH : Immunity
Innate

MESH: Immunity
Innate

MESH : Mutation
Research Article
MESH: Mutation
lcsh:QH426-470
MESH: Trans-Activators
MESH: Bile Acids and Salts
Model Organisms
MESH : Mice
medicine
Selection
Genetic

MESH: Nutritional Physiological Phenomena
MESH : Bacterial Outer Membrane Proteins
MESH: Mice
030304 developmental biology
Evolutionary Biology
Gene Expression Regulation
Bacterial

biology.organism_classification
MESH : Bile Acids and Salts
lcsh:Genetics
bacteria
MESH : Animals
MESH : Flagella
MESH: DNA-Binding Proteins
Zdroj: PLoS Genetics
PLoS Genetics, Public Library of Science, 2011, 7 (6), pp.e1002107. ⟨10.1371/journal.pgen.1002107⟩
PLoS Genetics, 2011, 7 (6), pp.e1002107. ⟨10.1371/journal.pgen.1002107⟩
PLoS Genetics, Public Library of Science, 2011, 7 (6), pp.e1002107. 〈10.1371/journal.pgen.1002107〉
PLoS Genetics, Vol 7, Iss 6, p e1002107 (2011)
Plos Genetics 6 (7), e1002107. (2011)
ISSN: 1553-7390
1553-7404
DOI: 10.1371/journal.pgen.1002107⟩
Popis: Bacterial diversification is often observed, but underlying mechanisms are difficult to disentangle and remain generally unknown. Moreover, controlled diversification experiments in ecologically relevant environments are lacking. We studied bacterial diversification in the mammalian gut, one of the most complex bacterial environments, where usually hundreds of species and thousands of bacterial strains stably coexist. Herein we show rapid genetic diversification of an Escherichia coli strain upon colonisation of previously germ-free mice. In addition to the previously described mutations in the EnvZ/OmpR operon, we describe the rapid and systematic selection of mutations in the flagellar flhDC operon and in malT, the transcriptional activator of the maltose regulon. Moreover, within each mouse, the three mutant types coexisted at different levels after one month of colonisation. By combining in vivo studies and determination of the fitness advantages of the selected mutations in controlled in vitro experiments, we provide evidence that the selective forces that drive E. coli diversification in the mouse gut are the presence of bile salts and competition for nutrients. Altogether our results indicate that a trade-off between stress resistance and nutritional competence generates sympatric diversification of the gut microbiota. These results illustrate how experimental evolution in natural environments enables identification of both the selective pressures that organisms face in their natural environment and the diversification mechanisms.
Author Summary The mechanisms generating the huge biodiversity on earth are not entirely understood. Bacterial populations are powerful models to explore the mechanisms of evolution, owing to their big population size, rapid growth, and high mutation rate. One of the more complex bacterial community is the mammalian gut microbiota, and Escherichia coli is one of the first colonizers of the newborn intestine. Herein we studied diversification of an Escherichia coli strain in germ-free mice, a simplified though ecologically relevant system. We show rapid genetic diversification upon colonization, characterized by the systematic selection of mutations in three different pathways: in the global regulator EnvZ/OmpR controlling outer membrane permeability, in the flagellar operon, and in the maltose regulon. By combining in vivo and in vitro experiments, we show that the selective forces that drive E. coli diversification are the presence of bile salts and the competition for nutrients. Altogether our results indicate that a trade-off between stress resistance and nutritional competence is sufficient to mediate diversification of bacteria. These results illustrate how experimental evolution in natural environments allows the identification of the selective pressures that organisms face in their natural environment, as well as the diversification mechanisms.
Databáze: OpenAIRE