Injectable Magnetic-Responsive Short-Peptide Supramolecular Hydrogels: Ex Vivo and In Vivo Evaluation
Autor: | Fanny Burel-Vandenbos, Mari C. Mañas-Torres, David Momier, Cristina Blanco-Elices, Marianne Goracci, Francisco J Vazquez-Perez, Modesto T. López-López, Pavel Kuzhir, Luis Álvarez de Cienfuegos, Ismael Rodríguez, Cristina Gila-Vilchez, Miguel Alaminos, Arnaud Borderie, Jean-Claude Scimeca |
---|---|
Přispěvatelé: | Universidad de Granada (UGR), ibs.GRANADA Instituto de Investigación Biosanitaria [Granada, Spain], Institut de Physique de Nice (INPHYNI), Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), Institut de Biologie Valrose (IBV), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Université Côte d'Azur (UCA), University of Córdoba [Córdoba], COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), SCIMECA, Jean-Claude, Universidad de Granada = University of Granada (UGR), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Universidad de Córdoba = University of Córdoba [Córdoba] |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Biocompatible Materials
02 engineering and technology [SDV.BC.IC] Life Sciences [q-bio]/Cellular Biology/Cell Behavior [q-bio.CB] [SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biology 01 natural sciences Mice Tissue engineering Materials Testing [SDV.BC.IC]Life Sciences [q-bio]/Cellular Biology/Cell Behavior [q-bio.CB] General Materials Science Magnetite Nanoparticles [SDV.BBM.BC] Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM] Mice Inbred BALB C [SDV.MHEP.RSOA] Life Sciences [q-bio]/Human health and pathology/Rhumatology and musculoskeletal system Molecular Structure Hybrid hydrogels Hydrogels Self-assembly self-assembly 021001 nanoscience & nanotechnology 3. Good health [SDV.MHEP.RSOA]Life Sciences [q-bio]/Human health and pathology/Rhumatology and musculoskeletal system tissue engineering Self-healing hydrogels Magnetic nanoparticles Regenerative medicine [SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN] 0210 nano-technology Research Article biomaterials magnetic nanoparticles Materials science Biocompatibility Macromolecular Substances Injections Subcutaneous Supramolecular chemistry regenerative medicine Nanotechnology [SDV.CAN]Life Sciences [q-bio]/Cancer macromolecular substances 010402 general chemistry complex mixtures Biomaterials [SDV.CAN] Life Sciences [q-bio]/Cancer In vivo [SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN] hybrid hydrogels Animals [SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM] [SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/Biomaterials Cell Proliferation Osteoblasts technology industry and agriculture [SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biology 0104 chemical sciences [SDV.IB.BIO] Life Sciences [q-bio]/Bioengineering/Biomaterials peptides Peptides Ex vivo |
Zdroj: | ACS Applied Materials & Interfaces ACS Applied Materials & Interfaces, Washington, D.C. : American Chemical Society, 2021, ⟨10.1021/acsami.1c13972⟩ Digibug. Repositorio Institucional de la Universidad de Granada instname ACS Applied Materials & Interfaces, 2021, ⟨10.1021/acsami.1c13972⟩ |
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c13972⟩ |
Popis: | This study was supported by project FIS2017-85954-R funded by MCIN/AEI/10.13039/501100011033/FEDER "Una manera de hacer Europa", Spain, grants FIS PI20/0317 and ICI19/00024 (BIOCLEFT) (MINECO, Instituto de Salud Carlos III, Spain, cofinanced by FEDER funds, European Union), grant PE-0395-2019 (Consejeri ' a de Salud y Familias, Junta de Andalucia ', Spain), and project PPJIB2020.07 (Universidad de Granada, Spain). M.C.M.-T. acknowledges grant PRE2018-083773 funded by MCIN/AEI/10.13039/501100011033 and FSE "El FSE invierte en tu futuro", Spain. C.G.-V. acknowledges grant FPU17/00491 funded by MCIN/AEI/10.13039/501100011033 and FSE "El FSE invierte en tu futuro", Spain. P.K., D.M., and J.-C.S. acknowledge the French Agence Nationale de la Recherche, Project Future Investments UCA JEDI no. ANR-15-IDEX-01 (project RheoGels) for financial support. Funding for open access charge: Universidad de Granada/CBUA. The inclusion of magnetic nanoparticles (MNP) in a hydrogel matrix to produce magnetic hydrogels has broadened the scope of these materials in biomedical research. Embedded MNP offer the possibility to modulate the physical properties of the hydrogel remotely and on demand by applying an external magnetic field. Moreover, they enable permanent changes in the mechanical properties of the hydrogel, as well as alterations in the micro- and macroporosity of its threedimensional (3D) structure, with the associated potential to induce anisotropy. In this work, the behavior of biocompatible and biodegradable hydrogels made with Fmoc-diphenylalanine (Fmoc-FF) (Fmoc = fluorenylmethoxycarbonyl) and Fmoc−arginine−glycine− aspartic acid (Fmoc-RGD) short peptides to which MNP were incorporated was studied in detail with physicochemical, mechanical, and biological methods. The resulting hybrid hydrogels showed enhance mechanical properties and withstood injection without phase disruption. In mice, the hydrogels showed faster and improved self-healing properties compared to their nonmagnetic counterparts. Thanks to these superior physical properties and stability during culture, they can be used as 3D scaffolds for cell growth. Additionally, magnetic short-peptide hydrogels showed good biocompatibility and the absence of toxicity, which together with their enhanced mechanical stability and excellent injectability make them ideal biomaterials for in vivo biomedical applications with minimally invasive surgery. This study presents a new approach to improving the physical and mechanical properties of supramolecular hydrogels by incorporating MNP, which confer structural reinforcement and stability, remote actuation by magnetic fields, and better injectability. Our approach is a potential catalyst for expanding the biomedical applications of supramolecular short-peptide hydrogels. Instituto de Salud Carlos III FIS PI20/0317 ICI19/00024 European Commission FSE "El FSE invierte en tu futuro", Spain French National Research Agency (ANR) ANR-15-IDEX-01 Universidad de Granada/CBUA FIS2017-85954-R MCIN/AEI/10.13039/501100011033/FEDER PE-0395-2019 PPJIB2020.07 PRE2018-083773 MCIN/AEI/10.13039/501100011033 FPU17/00491 |
Databáze: | OpenAIRE |
Externí odkaz: |