Injectable Magnetic-Responsive Short-Peptide Supramolecular Hydrogels: Ex Vivo and In Vivo Evaluation

Autor: Fanny Burel-Vandenbos, Mari C. Mañas-Torres, David Momier, Cristina Blanco-Elices, Marianne Goracci, Francisco J Vazquez-Perez, Modesto T. López-López, Pavel Kuzhir, Luis Álvarez de Cienfuegos, Ismael Rodríguez, Cristina Gila-Vilchez, Miguel Alaminos, Arnaud Borderie, Jean-Claude Scimeca
Přispěvatelé: Universidad de Granada (UGR), ibs.GRANADA Instituto de Investigación Biosanitaria [Granada, Spain], Institut de Physique de Nice (INPHYNI), Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), Institut de Biologie Valrose (IBV), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Université Côte d'Azur (UCA), University of Córdoba [Córdoba], COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), SCIMECA, Jean-Claude, Universidad de Granada = University of Granada (UGR), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Universidad de Córdoba = University of Córdoba [Córdoba]
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Biocompatible Materials
02 engineering and technology
[SDV.BC.IC] Life Sciences [q-bio]/Cellular Biology/Cell Behavior [q-bio.CB]
[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry
Molecular Biology/Molecular biology

01 natural sciences
Mice
Tissue engineering
Materials Testing
[SDV.BC.IC]Life Sciences [q-bio]/Cellular Biology/Cell Behavior [q-bio.CB]
General Materials Science
Magnetite Nanoparticles
[SDV.BBM.BC] Life Sciences [q-bio]/Biochemistry
Molecular Biology/Biochemistry [q-bio.BM]

Mice
Inbred BALB C

[SDV.MHEP.RSOA] Life Sciences [q-bio]/Human health and pathology/Rhumatology and musculoskeletal system
Molecular Structure
Hybrid hydrogels
Hydrogels
Self-assembly
self-assembly
021001 nanoscience & nanotechnology
3. Good health
[SDV.MHEP.RSOA]Life Sciences [q-bio]/Human health and pathology/Rhumatology and musculoskeletal system
tissue engineering
Self-healing hydrogels
Magnetic nanoparticles
Regenerative medicine
[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry
Molecular Biology/Genomics [q-bio.GN]

0210 nano-technology
Research Article
biomaterials
magnetic nanoparticles
Materials science
Biocompatibility
Macromolecular Substances
Injections
Subcutaneous

Supramolecular chemistry
regenerative medicine
Nanotechnology
[SDV.CAN]Life Sciences [q-bio]/Cancer
macromolecular substances
010402 general chemistry
complex mixtures
Biomaterials
[SDV.CAN] Life Sciences [q-bio]/Cancer
In vivo
[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Genomics [q-bio.GN]

hybrid hydrogels
Animals
[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Biochemistry [q-bio.BM]

[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/Biomaterials
Cell Proliferation
Osteoblasts
technology
industry
and agriculture

[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Molecular biology

0104 chemical sciences
[SDV.IB.BIO] Life Sciences [q-bio]/Bioengineering/Biomaterials
peptides
Peptides
Ex vivo
Zdroj: ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces, Washington, D.C. : American Chemical Society, 2021, ⟨10.1021/acsami.1c13972⟩
Digibug. Repositorio Institucional de la Universidad de Granada
instname
ACS Applied Materials & Interfaces, 2021, ⟨10.1021/acsami.1c13972⟩
ISSN: 1944-8244
1944-8252
DOI: 10.1021/acsami.1c13972⟩
Popis: This study was supported by project FIS2017-85954-R funded by MCIN/AEI/10.13039/501100011033/FEDER "Una manera de hacer Europa", Spain, grants FIS PI20/0317 and ICI19/00024 (BIOCLEFT) (MINECO, Instituto de Salud Carlos III, Spain, cofinanced by FEDER funds, European Union), grant PE-0395-2019 (Consejeri ' a de Salud y Familias, Junta de Andalucia ', Spain), and project PPJIB2020.07 (Universidad de Granada, Spain). M.C.M.-T. acknowledges grant PRE2018-083773 funded by MCIN/AEI/10.13039/501100011033 and FSE "El FSE invierte en tu futuro", Spain. C.G.-V. acknowledges grant FPU17/00491 funded by MCIN/AEI/10.13039/501100011033 and FSE "El FSE invierte en tu futuro", Spain. P.K., D.M., and J.-C.S. acknowledge the French Agence Nationale de la Recherche, Project Future Investments UCA JEDI no. ANR-15-IDEX-01 (project RheoGels) for financial support. Funding for open access charge: Universidad de Granada/CBUA.
The inclusion of magnetic nanoparticles (MNP) in a hydrogel matrix to produce magnetic hydrogels has broadened the scope of these materials in biomedical research. Embedded MNP offer the possibility to modulate the physical properties of the hydrogel remotely and on demand by applying an external magnetic field. Moreover, they enable permanent changes in the mechanical properties of the hydrogel, as well as alterations in the micro- and macroporosity of its threedimensional (3D) structure, with the associated potential to induce anisotropy. In this work, the behavior of biocompatible and biodegradable hydrogels made with Fmoc-diphenylalanine (Fmoc-FF) (Fmoc = fluorenylmethoxycarbonyl) and Fmoc−arginine−glycine− aspartic acid (Fmoc-RGD) short peptides to which MNP were incorporated was studied in detail with physicochemical, mechanical, and biological methods. The resulting hybrid hydrogels showed enhance mechanical properties and withstood injection without phase disruption. In mice, the hydrogels showed faster and improved self-healing properties compared to their nonmagnetic counterparts. Thanks to these superior physical properties and stability during culture, they can be used as 3D scaffolds for cell growth. Additionally, magnetic short-peptide hydrogels showed good biocompatibility and the absence of toxicity, which together with their enhanced mechanical stability and excellent injectability make them ideal biomaterials for in vivo biomedical applications with minimally invasive surgery. This study presents a new approach to improving the physical and mechanical properties of supramolecular hydrogels by incorporating MNP, which confer structural reinforcement and stability, remote actuation by magnetic fields, and better injectability. Our approach is a potential catalyst for expanding the biomedical applications of supramolecular short-peptide hydrogels.
Instituto de Salud Carlos III FIS PI20/0317 ICI19/00024
European Commission
FSE "El FSE invierte en tu futuro", Spain
French National Research Agency (ANR) ANR-15-IDEX-01
Universidad de Granada/CBUA
FIS2017-85954-R MCIN/AEI/10.13039/501100011033/FEDER PE-0395-2019 PPJIB2020.07 PRE2018-083773 MCIN/AEI/10.13039/501100011033 FPU17/00491
Databáze: OpenAIRE