Approches de type intégrale de chemin pour l'étude de systèmes quantiques à N corps fortement corrélés
Autor: | Kilian Fraboulet |
---|---|
Přispěvatelé: | Laboratoire Matière sous Conditions Extrêmes (LMCE), DAM Île-de-France (DAM/DIF), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Université Paris-Saclay, Elias Khan, Jean-Paul Ebran, Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), STAR, ABES |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
[PHYS.NUCL] Physics [physics]/Nuclear Theory [nucl-th]
Action effective Quantum Physics Brisure de symétrie spontanée Nuclear Theory Strongly Correlated Electrons (cond-mat.str-el) [PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] O(N) model FOS: Physical sciences Modèle O(N) Spontaneous symmetry breaking Resummation theory Nuclear Theory (nucl-th) Condensed Matter - Strongly Correlated Electrons Théorie de la resommation [PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] Diagrammes de Feynman Effective action Groupe de renormalisation fonctionnel [PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] Quantum Physics (quant-ph) [PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph] [PHYS.COND] Physics [physics]/Condensed Matter [cond-mat] Functional renormalization group Feynman diagrams |
Zdroj: | Quantum Physics [quant-ph]. Université Paris-Saclay, 2021. English. ⟨NNT : 2021UPASP089⟩ Quantum Physics [quant-ph]. Université Paris-Saclay, 2021. English. ⟨NNT : ⟩ Kilian Fraboulet |
Popis: | The core of this thesis is the path-integral formulation of quantum field theory and its ability to describe strongly-coupled many-body systems of finite size. Collective behaviors can be efficiently described in such systems through the implementation of spontaneous symmetry breaking (SSB) in mean field approaches. However, as the thermodynamic limit does not make sense in finite-size systems, the latter can not exhibit any SSB and the symmetries which are broken down at the mean field level must therefore be restored. The efficiency of theoretical approaches in the treatment of finite-size quantum systems can therefore be studied via their ability to restore spontaneously broken symmetries. In this thesis, a zero-dimensional O(N) model is taken as a theoretical laboratory to perform such an investigation with many state-of-the-art path-integral techniques: perturbation theory combined with various resummation methods (Padé-Borel, Meijer-G, conformal mapping), enhanced versions of perturbation theory (transseries derived via Lefschetz thimbles, optimized perturbation theory), self-consistent perturbation theory based on effective actions (auxiliary field loop expansion (LOAF), Cornwall-Jackiw-Tomboulis (CJT) formalism, 4PPI effective action,...), functional renormalization group (FRG) techniques (FRG based on the Wetterich equation, DFT-FRG, 2PI-FRG). Connections between these different techniques are also emphasized. In addition, the path-integral formalism provides us with the possibility to introduce collective degrees of freedom in an exact fashion via Hubbard-Stratonovich transformations: the effect of such transformations on all the aforementioned methods is also examined in detail. Le cœur de ce travail de thèse est la formulation de la théorie quantique des champs basée sur les intégrales de chemin et sa capacité à décrire les systèmes quantiques à N corps fortement corrélés de taille finie. Les phénomènes collectifs gouvernant la phénoménologie de tels systèmes peuvent être efficacement décrits par l'implémentation de brisures de symétrie spontanées (SSB) dans le cadre d'approches de type champ moyen. Cependant, la limite thermodynamique n'étant pas pertinente pour des systèmes de taille finie, ces derniers ne peuvent manifester de SSB et les symétries brisées au niveau du champ moyen doivent donc être restaurées. L'efficacité d'approches théoriques à traiter les systèmes quantiques de taille finie peut donc être étudiée à travers leur capacité à restaurer les symétries brisées spontanément. Dans ce travail de thèse, nous prenons pour cadre théorique un modèle O(N) à zéro dimension pour réaliser une telle étude avec diverses méthodes de type intégrale de chemin : théorie des perturbations combinée avec différentes techniques de resommation (Padé-Borel, Meijer-G, conformal mapping), versions modifiées de la théorie des perturbations (transseries déterminées via le formalisme des Lefschetz thimbles, théorie des perturbations optimisée), théorie des perturbations auto-cohérente basée sur des actions effectives (auxiliary field loop expansion (LOAF), formalisme Cornwall-Jackiw-Tomboulis (CJT), action effective 4PPI,...), techniques de type groupe de renormalisation fonctionnel (FRG) (FRG basé sur l'équation de Wetterich, DFT-FRG, 2PI-FRG). Des connexions entre ces différentes méthodes sont aussi mises en exergue. De plus, le formalisme des intégrales de chemin nous offre la possibilité d'introduire des degrés de liberté collectifs de manière exacte à l'aide de transformations de Hubbard-Stratonovich : l'effet de telles transformations sur les méthodes susmentionnées est également étudié en détail. |
Databáze: | OpenAIRE |
Externí odkaz: |