Poisson–Poincaré reduction for Field Theories
Autor: | Berbel, Miguel Á., López, Marco Castrillón |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Journal of Geometry and Physics. :104879 |
ISSN: | 0393-0440 |
DOI: | 10.1016/j.geomphys.2023.104879 |
Popis: | Given a Hamiltonian system on a fiber bundle, there is a Poisson covariant formulation of the Hamilton equations. When a Lie group G acts freely, properly, preserving the fibers of the bundle and the Hamiltonian density is G-invariant, we study the reduction of this formulation to obtain an analogue of Poisson-Poincar\'e reduction for field theories. This procedure is related to the Lagrange-Poincar\'e reduction for field theories via a Legendre transformation. Finally, an application to a model of a charged strand evolving in an electric field is given. Comment: 34 pages |
Databáze: | OpenAIRE |
Externí odkaz: |