Integrable deformations of the Bogoyavlenskij-Itoh Lotka-Volterra systems
Autor: | Charalampos A. Evripidou, Pol Vanhaecke, Pavlos Kassotakis |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Pure mathematics
Integrable system 010308 nuclear & particles physics Dynamical Systems (math.DS) Poisson distribution 01 natural sciences symbols.namesake Mathematics (miscellaneous) Nonlinear Sciences::Exactly Solvable and Integrable Systems 0103 physical sciences symbols FOS: Mathematics 37J35 70H06 39A22 Mathematics - Dynamical Systems 010306 general physics Mathematics |
Popis: | We construct a family of integrable deformations of the Bogoyavlenskij-Itoh systems and construct a Lax operator with spectral parameter for it. Our approach is based on the construction of a family of compatible Poisson structures for the undeformed system, whose Casimirs are shown to yield a generating function for the integrals in involution of the deformed systems. We show how these deformations are related to the Veselov-Shabat systems. 23 pages, 14 references |
Databáze: | OpenAIRE |
Externí odkaz: |