Laurent series for inversion of linearly perturbed bounded linear operators on Banach space
Autor: | Phil Howlett, Charles E. M. Pearce, Amie Albrecht |
---|---|
Přispěvatelé: | Howlett, Phil, Albrecht, Amie, Pearce, Charles |
Rok vydání: | 2010 |
Předmět: |
Banach space
Bounded linear operators laurent series Approximation property Applied Mathematics Laurent series Mathematical analysis Linear perturbation Finite-rank operator Compact operator Operator space Bounded operator linear perturbation bounded linear operators Bounded inverse theorem C0-semigroup Analysis Mathematics |
Zdroj: | Journal of Mathematical Analysis and Applications. 366:112-123 |
ISSN: | 0022-247X |
DOI: | 10.1016/j.jmaa.2009.12.007 |
Popis: | In this paper we find necessary and sufficient conditions for the existence of a Laurent series expansion with a finite order pole at the origin for the inverse of a linearly perturbed bounded linear operator mapping one Banach space to another. In particular we show that the inversion defines linear projections that separate the Banach spaces into corresponding complementary subspaces. We present two pertinent applications. Refereed/Peer-reviewed |
Databáze: | OpenAIRE |
Externí odkaz: |