Laurent series for inversion of linearly perturbed bounded linear operators on Banach space

Autor: Phil Howlett, Charles E. M. Pearce, Amie Albrecht
Přispěvatelé: Howlett, Phil, Albrecht, Amie, Pearce, Charles
Rok vydání: 2010
Předmět:
Zdroj: Journal of Mathematical Analysis and Applications. 366:112-123
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2009.12.007
Popis: In this paper we find necessary and sufficient conditions for the existence of a Laurent series expansion with a finite order pole at the origin for the inverse of a linearly perturbed bounded linear operator mapping one Banach space to another. In particular we show that the inversion defines linear projections that separate the Banach spaces into corresponding complementary subspaces. We present two pertinent applications. Refereed/Peer-reviewed
Databáze: OpenAIRE