A new on-line exponential parameter estimator without persistent excitation

Autor: Romeo Ortega, Alexey A. Bobtsov, Marina Korotina, Jose Guadalupe Romero, Stanislav Aranovskiy
Přispěvatelé: Institut d'Électronique et des Technologies du numéRique (IETR), Université de Nantes (UN)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), CentraleSupélec, Nantes Université (NU)-Université de Rennes 1 (UR1), Université de Nantes (UN)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), 18-19-00627, Russian Science Foundation
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Systems and Control Letters
Systems and Control Letters, Elsevier, 2022, 159, pp.105079. ⟨10.1016/j.sysconle.2021.105079⟩
Systems and Control Letters, 2022, 159, pp.105079. ⟨10.1016/j.sysconle.2021.105079⟩
ISSN: 0167-6911
1872-7956
Popis: In this paper we propose a new algorithm that estimates on-line the parameters of a classical vector linear regression equation Y = Ω θ , where Y ∈ R n , Ω ∈ R n × q are bounded, measurable signals and θ ∈ R q is a constant vector of unknown parameters, even when the regressor Ω is not persistently exciting. Moreover, the convergence of the new parameter estimator is global and exponential and is given for both, continuous-time and discrete-time implementations. As an illustration example we consider the problem of parameter estimation of a linear time-invariant system, when the input signal is not sufficiently exciting, which is known to be a necessary and sufficient condition for the solution of the problem with standard gradient or least-squares adaptation algorithms.
Databáze: OpenAIRE