Ricci flat Kähler metrics on rank two complex symmetric spaces
Autor: | Olivier Biquard, Thibaut Delcroix |
---|---|
Přispěvatelé: | Département de Mathématiques et Applications - ENS Paris (DMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Mathematics - Differential Geometry
Pure mathematics Mathematics - Complex Variables General Mathematics 010102 general mathematics 01 natural sciences Hermitian matrix [MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] Symmetric space 0103 physical sciences 010307 mathematical physics Compactification (mathematics) Mathematics::Differential Geometry 0101 mathematics Mathematics |
Zdroj: | Journal de l'École polytechnique — Mathématiques Journal de l'École polytechnique — Mathématiques, École polytechnique, 2019, 6, pp.163-201. ⟨10.5802/jep.91⟩ |
ISSN: | 2429-7100 2270-518X |
DOI: | 10.5802/jep.91⟩ |
Popis: | We obtain Ricci flat K\"ahler metrics on complex symmetric spaces of rank two by using an explicit asymptotic model whose geometry at infinity is interpreted in the wonderful compactification of the symmetric space. We recover the metrics of Biquard-Gauduchon in the Hermitian case and obtain in addition several new metrics. Comment: 39 pages |
Databáze: | OpenAIRE |
Externí odkaz: |