Differential equations invariant under conditional symmetries
Autor: | Miguel A. Rodríguez, Decio Levi, Zora Thomova |
---|---|
Přispěvatelé: | Levi, D., Rodriguez, M. A., Thomova, Z. |
Rok vydání: | 2019 |
Předmět: |
conditional symmetrie
Pure mathematics Conditional symmetry Partial differential equation Física-Modelos matemáticos Differential equation Mathematics::Analysis of PDEs FOS: Physical sciences Statistical and Nonlinear Physics Mathematical Physics (math-ph) Nonlinear system Nonlinear Sciences::Exactly Solvable and Integrable Systems Homogeneous space partial differential equations Física matemática Lie symmetrie Invariant (mathematics) Nonlinear Sciences::Pattern Formation and Solitons Mathematical Physics Mathematics |
Zdroj: | E-Prints Complutense. Archivo Institucional de la UCM instname E-Prints Complutense: Archivo Institucional de la UCM Universidad Complutense de Madrid |
Popis: | Nonlinear PDE's having {\bf given} conditional symmetries are constructed. They are obtained starting from the invariants of the "conditional symmetry" generator and imposing the extra condition given by the characteristic of the symmetry. Several of examples starting from the Boussinesq and including non-autonomous Korteweg-De Vries like equations are given to showcase the methodology introduced. 12 pages |
Databáze: | OpenAIRE |
Externí odkaz: |