The in vivo degradation of a ruthenium labelled polysaccharide-based hydrogel for bone tissue engineering

Autor: Pascal Janvier, Ahmed Fatimi, Pierre Weiss, Samia Laïb, Marc Petit, Claire Vinatier, Borhane H. Fellah, Bruno Bujoli, Olivier Gauthier, Sophie Quillard, Sylvain Bohic
Přispěvatelé: Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'ingénierie osteo-articulaire et dentaire (LIOAD), Université de Nantes (UN)-IFR26-Institut National de la Santé et de la Recherche Médicale (INSERM), Chirurgie expérimentale (ENV), Ecole Nationale Vétérinaire de Nantes, Grenoble Institut des Neurosciences (GIN), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Santé et de la Recherche Médicale (INSERM), Laïb, Samia, Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
Jazyk: angličtina
Rok vydání: 2009
Předmět:
Calcium Phosphates
Ceramics
cytology [Chondrocytes]
Time Factors
Implantation Site
Biocompatible Materials
02 engineering and technology
Bone tissue
Hydrogel
Polyethylene Glycol Dimethacrylate

calcium phosphate
Hypromellose Derivatives
Tissue engineering
Osteogenesis
Absorbable Implants
Femur
Cells
Cultured

chemistry.chemical_classification
metabolism [Ceramics]
021001 nanoscience & nanotechnology
analogs & derivatives [Methylcellulose]
pathology [Femur]
hypromellose
Ruthenium
drug effects [Bone and Bones]
medicine.anatomical_structure
Cross-Linking Reagents
Mechanics of Materials
Rabbits
0210 nano-technology
metabolism [Calcium Phosphates]
Materials science
Cell Survival
metabolism [Ruthenium]
drug effects [Cell Survival]
0206 medical engineering
Biophysics
chemistry.chemical_element
Bioengineering
drug effects [Chondrocytes]
Bone healing
metabolism [N-Acetylneuraminic Acid]
Methylcellulose
Polysaccharide
Bone and Bones
Cell Line
Biomaterials
Prosthesis Implantation
metabolism [Bone and Bones]
Chondrocytes
In vivo
ddc:570
medicine
Animals
Humans
metabolism [Biocompatible Materials]
[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/Biomaterials
pharmacology [Cross-Linking Reagents]
metabolism [Hydrogel]
metabolism [Methylcellulose]
chemistry [N-Acetylneuraminic Acid]
Tissue Engineering
020601 biomedical engineering
N-Acetylneuraminic Acid
[SDV.IB.BIO] Life Sciences [q-bio]/Bioengineering/Biomaterials
Hydrogel
chemistry
drug effects [Osteogenesis]
chemistry [Methylcellulose]
Ceramics and Composites
ultrastructure [Femur]
Biomedical engineering
Explant culture
Zdroj: Biomaterials 30, 1568-1577 (2009). doi:10.1016/j.biomaterials.2008.11.031
Biomaterials
Biomaterials, 2008, epub ahead of print. ⟨10.1016/j.biomaterials.2008.11.031⟩
Biomaterials, Elsevier, 2008, epub ahead of print. ⟨10.1016/j.biomaterials.2008.11.031⟩
ISSN: 0142-9612
DOI: 10.1016/j.biomaterials.2008.11.031
Popis: International audience; In this paper we report a new method that permitted for the first time to selectively track a polysaccharide-based hydrogel on bone tissue explants, several weeks after its implantation. The hydrogel, which was developed for bone healing and tissue engineering, was labelled with a ruthenium complex and implanted into rabbit bone defects in order to investigate its in vivo degradation. 1, 2, 3 and 8 weeks after surgery, the bone explants were analyzed by synchrotron X-ray microfluorescence, infrared mapping spectroscopy, scanning electron microscopy, and optical microscopy after histological coloration. The results showed that the labelled polysaccharide-based hydrogel was likely to undergo phagocytosis that seemed to occur from the edge to the center of the implantation site up to at least the 8th week.
Databáze: OpenAIRE