Intuitionistic fuzzy almost Cauchy–Jensen mappings
Autor: | M. E. Gordji, Sadegh Abbaszadeh |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Hyers–Ulam stability
46S40 Pure mathematics Cauchy–Jensen mapping General Mathematics lcsh:Mathematics 47S40 39B52 Cauchy distribution Intuitionistic fuzzy 010103 numerical & computational mathematics lcsh:QA1-939 01 natural sciences 010305 fluids & plasmas 34K36 0103 physical sciences 39B82 0101 mathematics 26E50 intuitionistic fuzzy Banach space Mathematics |
Zdroj: | Demonstratio Mathematica, Vol 49, Iss 1, Pp 18-25 (2016) |
ISSN: | 2391-4661 |
Popis: | In this paper, we first investigate the Hyers–Ulam stability of the generalized Cauchy–Jensen functional equation of p-variable f(∑i=1paixi)=∑i=1paif(xi)$f\left(\sum\nolimits_{i = 1}^p {a_i x_i } \right) = \sum\nolimits_{i = 1}^p {a_i f(x_i )}$ in an intuitionistic fuzzy Banach space. Then, we conclude the results for Cauchy–Jensen functional equation of p-variable f(x1+⋯+xpp)=1p(f(x1)+⋯+f(xp))$f\left( {{\textstyle{{x_1 + \cdots + x_p } \over p}}} \right) = {1 \over p}(f(x_1 ) + \cdots + f(x_p ))$ . Next, we discuss the intuitionistic fuzzy continuity of Cauchy–Jensen mappings. |
Databáze: | OpenAIRE |
Externí odkaz: |