Peak shift measurement of localized surface plasmon resonance by a portable electronic system
Autor: | Giulia Cappi, Maria Anita Rampi, Vera Cantale, Carlotta Guiducci, Luca Benini, Enrico Accastelli |
---|---|
Přispěvatelé: | G. Cappi, E. Accastelli, V. Cantale, M. A. Rampi, L. Benini, C. Guiducci |
Rok vydání: | 2013 |
Předmět: |
Materials science
LEDs Molecular binding chemistry.chemical_element Plasmonic peak Nanoislands law.invention Optics law Materials Chemistry Transmission LSPR Electrical and Electronic Engineering Surface plasmon resonance Instrumentation Image resolution Plasmon business.industry System of measurement LED Metals and Alloys Condensed Matter Physics Surfaces Coatings and Films Electronic Optical and Magnetic Materials Characterization (materials science) chemistry Point-of-care Tin business Light-emitting diode |
Zdroj: | Sensors and Actuators B: Chemical. 176:225-231 |
ISSN: | 0925-4005 |
DOI: | 10.1016/j.snb.2012.07.085 |
Popis: | In recent years, the characterization of surface molecular layers by localized surface plasmon resonance (LSPR) has attracted a lot of interest thanks to its ability to provide a higher spatial resolution with respect to standard SPR. LSPR can be observed as a peak in the extinction spectrum of metal nanoparticles such as gold non-connected surface patterns. A plasmon peak red shift is caused both by the presence of molecular layers on the gold surface and by molecular binding events. The current study presents a portable transmission system to observe the LSPR phenomenon that extracts the peak location employing a discrete number of light sources. The peak location extraction is performed by an algorithm that takes into account the spectral characteristics of all the components. The performance of our LSPR measurement system has been characterized on a set of Fluorinated Tin Oxide-coated slides covered with nanoislands with a diameter of approximately 30 nm. The samples have been modified with a single-stranded DNA layer and the plasmonic peak location has been determined before and after surface treatment. The samples have been characterized in parallel with a high-end spectrophotometer. The results presented demonstrated the performance of our measurement system in determining the peak location with 1 nm precision. (C) 2012 Elsevier B.V. All rights reserved. |
Databáze: | OpenAIRE |
Externí odkaz: |