Variation in traction forces during cell cycle progression

Autor: Manuel Théry, Benoit Vianay, Lisa Lee, Maya Anjur-Dietrich, Simon Alamos, Fabrice Senger, Elizabeth A. Bearce, Bevan L. Cheeseman
Přispěvatelé: Alloimmunité-Autoimmunité-Transplantation (A2T), Institut Universitaire d'Hématologie (IUH), Université Paris Diderot - Paris 7 (UPD7)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM), Physiologie cellulaire et végétale (LPCV), Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543, United States, affiliation inconnue, Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Ecotaxie, microenvironnement et développement lymphocytaire (EMily (UMR_S_1160 / U1160)), Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM), Marine Biological Laboratory, Martin-Laffon, Jacqueline, Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), ProdInra, Migration
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Cell division
Cell contractility
[SDV]Life Sciences [q-bio]
Cell cycle progression
Traction (engineering)
Morphogenesis
Retinal Pigment Epithelium
[SDV.BC]Life Sciences [q-bio]/Cellular Biology
Biology
Mechanotransduction
Cellular

Models
Biological

Cell Physiological Phenomena
Cell size
Contractility
03 medical and health sciences
0302 clinical medicine
cell mechanics
Humans
[SDV.BV]Life Sciences [q-bio]/Vegetal Biology
[SDV.BV] Life Sciences [q-bio]/Vegetal Biology
Computer Simulation
Tissue morphogenesis
[SDV.BC] Life Sciences [q-bio]/Cellular Biology
Cells
Cultured

ComputingMilieux_MISCELLANEOUS
030304 developmental biology
0303 health sciences
Tractive force
Cell growth
traction forces
Cell biology
[SDV] Life Sciences [q-bio]
Luminescent Proteins
Cell shape
cell cycle
030217 neurology & neurosurgery
Zdroj: Biology of the Cell
Biology of the Cell, 2018, 110 (4), pp.91-96
Biology of the Cell, Wiley, 2018, 110 (4), pp.91-96
ISSN: 0248-4900
1768-322X
Popis: Background InformationTissue morphogenesis results from the interplay between cell growth and mechanical forces. While the impact of geometrical confinement and mechanical forces on cell proliferation has been fairly well characterised, the inverse relationship is much less understood. Here, we investigated how traction forces vary during cell cycle progression. ResultsCell shape was constrained on micropatterned substrates in order to distinguish variations in cell contractility from cell size increase. We performed traction force measurements of asynchronously dividing cells expressing a cell-cycle reporter, to obtain measurements of contractile forces generated during cell division. We found that forces tend to increase as cells progress through G1, before reaching a plateau in S phase, and then decline during G2. ConclusionsWhile cell size increases regularly during cell cycle progression, traction forces follow a biphasic behaviour based on specific and opposite regulation of cell contractility during early and late growth phases. SignificanceThese results highlight the key role of cellular signalling in the regulation of cell contractility, independently of cell size and shape. Non-monotonous variations of cell contractility during cell cycle progression are likely to impact the mechanical regulation of tissue homoeostasis in a complex and non-linear manner.
Databáze: OpenAIRE