Two-dimensional Lorentz process for magnetotransport: Boltzmann-Grad limit

Autor: Nota, Alessia, Saffirio, Chiara, Simonella, Sergio
Přispěvatelé: Department of Information Engineering, Computer Science and Mathematics = Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica [L'Aquila] (DISIM), Università degli Studi dell'Aquila = University of L'Aquila (UNIVAQ), Department of Mathematics [Basel], University of Basel (Unibas), Centre National de la Recherche Scientifique (CNRS), Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica [L'Aquila] (DISIM), Università degli Studi dell'Aquila (UNIVAQ), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2022, 58 (2), pp.1228-1243
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), In press
ISSN: 0246-0203
1778-7017
Popis: We study a system of charged, noninteracting classical particles moving in a Poisson distribution of hard-disk scatterers in two dimensions, under the effect of a magnetic field perpendicular to the plane. We prove that, in the low-density (Boltzmann-Grad) limit, the particle distribution evolves according to a generalized linear Boltzmann equation, previously derived and solved by Bobylev et al. [4, 5, 6]. In this model, Boltzmann's chaos fails, and the kinetic equation includes non-Markovian terms. The ideas of [13] can be however adapted to prove convergence of the process with memory.
Comment: 18 pages, 6 figures. Minor modifications
Databáze: OpenAIRE