Prediction of slope instabilities due to deep-seated gravitational creep
Autor: | E. Brückl, M. Parotidis |
---|---|
Přispěvatelé: | Geophysics Department [Vienna] (TU Wien), Vienna University of Technology (TU Wien), Geophysics Department [Berlin], Free University of Berlin (FU), EGU, Publication |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere 010504 meteorology & atmospheric sciences Mass movement [SDU.OCEAN] Sciences of the Universe [physics]/Ocean Atmosphere [SDU.STU]Sciences of the Universe [physics]/Earth Sciences Slip (materials science) Mechanics 010502 geochemistry & geophysics 01 natural sciences Instability [SDU.ENVI] Sciences of the Universe [physics]/Continental interfaces environment Gravitation Pore water pressure Creep Coulomb [SDU.STU] Sciences of the Universe [physics]/Earth Sciences General Earth and Planetary Sciences Geotechnical engineering Rock mass classification [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment Geology 0105 earth and related environmental sciences |
Zdroj: | Natural Hazards and Earth System Sciences Natural Hazards and Earth System Sciences, Copernicus Publ. / European Geosciences Union, 2005, 5 (2), pp.155-172 |
ISSN: | 1684-9981 1561-8633 |
Popis: | Deep-seated gravitational creep in rock slopes, rock-flow or sackung is a special category of mass-movement, in which long-lasting small-scale movements prevail. The prime causes of these mass movements in the Alpine area seem to have been glacial retreat at ~15000 a B.P. Many sackung stabilize and some undergo the transition to rapid sliding. This paper concentrates on four mass-movements in crystalline complexes of the Austrian Alps which have been investigated for aspects of deep-seated gravitational creep and prediction of the transition to rapid sliding. The present-day extent of the creeping or sliding of the rock mass has been modelled by a process of progressive, stress induced damage. Subcritical crack growth has been assumed to control this process and also the velocity of the mass movement. A sliding surface and decreasing Coulomb stress at this surface as a function of slip is a precondition for instability. The development of the four examples has been modelled successfully by a rotational slider block model and the conception of subcritical crack growth and progressive smoothing of the sliding surface. The interrelations between velocity, pore water pressure, seismic activity and the state of the sliding surface have been derived. Finally we discuss how the hypothesis inherent in the models presented could be validated and used for prediction. |
Databáze: | OpenAIRE |
Externí odkaz: |