Prediction of slope instabilities due to deep-seated gravitational creep

Autor: E. Brückl, M. Parotidis
Přispěvatelé: Geophysics Department [Vienna] (TU Wien), Vienna University of Technology (TU Wien), Geophysics Department [Berlin], Free University of Berlin (FU), EGU, Publication
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Natural Hazards and Earth System Sciences
Natural Hazards and Earth System Sciences, Copernicus Publ. / European Geosciences Union, 2005, 5 (2), pp.155-172
ISSN: 1684-9981
1561-8633
Popis: Deep-seated gravitational creep in rock slopes, rock-flow or sackung is a special category of mass-movement, in which long-lasting small-scale movements prevail. The prime causes of these mass movements in the Alpine area seem to have been glacial retreat at ~15000 a B.P. Many sackung stabilize and some undergo the transition to rapid sliding. This paper concentrates on four mass-movements in crystalline complexes of the Austrian Alps which have been investigated for aspects of deep-seated gravitational creep and prediction of the transition to rapid sliding. The present-day extent of the creeping or sliding of the rock mass has been modelled by a process of progressive, stress induced damage. Subcritical crack growth has been assumed to control this process and also the velocity of the mass movement. A sliding surface and decreasing Coulomb stress at this surface as a function of slip is a precondition for instability. The development of the four examples has been modelled successfully by a rotational slider block model and the conception of subcritical crack growth and progressive smoothing of the sliding surface. The interrelations between velocity, pore water pressure, seismic activity and the state of the sliding surface have been derived. Finally we discuss how the hypothesis inherent in the models presented could be validated and used for prediction.
Databáze: OpenAIRE