Fenichel theory for multiple time scale singular perturbation problems
Autor: | Pedro Toniol Cardin, Marco Antonio Teixeira |
---|---|
Přispěvatelé: | Universidade Estadual Paulista (Unesp), Universidade Estadual de Campinas (UNICAMP) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Multiple time scales
Singular perturbation Scale (ratio) 010102 general mathematics Mathematical analysis 01 natural sciences 010305 fluids & plasmas Modeling and Simulation Ordinary differential equation 0103 physical sciences Multiple time Fenichel theory Vector field 0101 mathematics Analysis Mathematics |
Zdroj: | Scopus Repositório Institucional da UNESP Universidade Estadual Paulista (UNESP) instacron:UNESP |
Popis: | Made available in DSpace on 2018-12-11T17:15:29Z (GMT). No. of bitstreams: 0 Previous issue date: 2017-01-01 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) This paper is concerned with a geometric study of singularly perturbed systems of ordinary differential equations expressed by (n-1)-parameter families of smooth vector fields on ℝl, where n ≥ 2. The inherent characteristic of such systems is the presence of an arbitrary number n of time scales. For n = 2, the proposed geometric approach in this paper reports to Fenichel theory of fast-slow systems [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53-98]. We extend the three main theorems due to Fenichel [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53-98] to systems involving any number of time scales. Departamento de Matemática Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista (UNESP), Rua Rio de Janeiro, 266 Departamento de Matemática Instituto de Matemática Estatística e Computação Científica Universidade Estadual de Campinas (UNICAMP), Rua Sérgio Buarque de Holanda, 651 Departamento de Matemática Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista (UNESP), Rua Rio de Janeiro, 266 FAPESP: 2012/18780-0 FAPESP: 2013/21947-6 FAPESP: 2013/24541-0 CNPq: 300596/2009-0 CAPES: 88881.030454/2013-01 |
Databáze: | OpenAIRE |
Externí odkaz: |