Endpoint for the div-curl lemma in Hardy spaces

Autor: Justin Feuto, Sandrine Grellier, Aline Bonami
Přispěvatelé: Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Université de Cocody, ANR-07-BLAN-0247,AHPI,Analyse Harmonique et Problèmes Inverses(2007)
Rok vydání: 2021
Předmět:
Pure mathematics
Statistics::Theory
Differential form
General Mathematics
Div-curl lemma
58A10
Mathematics::Analysis of PDEs
Mathematics::Classical Analysis and ODEs
differential forms
Hardy-spaces
[MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA]
01 natural sciences
symbols.namesake
42B30 (58A10)
42B30 (Primary) 58A10 (Secondary)
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
42B30
0101 mathematics
Exterior algebra
Mathematics
Curl (mathematics)
div-curl lemma
Mathematics::Functional Analysis
Mathematics - Complex Variables
Hardy-Orlicz spaces
010102 general mathematics
Mathematical analysis
[MATH.MATH-CV]Mathematics [math]/Complex Variables [math.CV]
Hardy space
Differential forms
010101 applied mathematics
Mathematics - Classical Analysis and ODEs
symbols
differential form
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
instname
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publicacions Matemàtiques; Vol. 54, Núm. 2 (2010); p. 341-358
Publicacions Matematiques (Barcelona)
Publicacions Matematiques (Barcelona), 2010, pp.341-358
Publ. Mat. 54, no. 2 (2010), 341-358
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Popis: We give a $\operatorname{div}$-$\operatorname{curl}$ type lemma for the wedge product of closed differential forms on ${\mathbb R}^n$ when they have coefficients respectively in a Hardy space and $L^\infty$ or $\mathit{BMO}$. In this latter case, the wedge product belongs to an appropriate Hardy-Orlicz space.
Databáze: OpenAIRE