RNase-L deficiency exacerbates experimental colitis and colitis-associated cancer
Autor: | Irina Polyakova, Arindam Chakrabarti, Robert H. Silverman, Jean-Pierre Raufman, Heather J. Ezelle, Bret A. Hassel, Tiha M. Long, Sarah E. Brennan-Laun |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Male
Blotting Western Azoxymethane Enzyme-Linked Immunosorbent Assay Biology Real-Time Polymerase Chain Reaction Inflammatory bowel disease Article Immunoenzyme Techniques chemistry.chemical_compound Mice Immune system Interferon Endoribonucleases medicine Immunology and Allergy Animals RNA Messenger Colitis Receptor Peroxidase Mice Knockout Innate immune system Reverse Transcriptase Polymerase Chain Reaction Dextran Sulfate Gastroenterology medicine.disease Flow Cytometry Immunity Innate Mice Inbred C57BL Disease Models Animal chemistry Immunology Colonic Neoplasms Interferon Type I Carcinogens Cytokines Female Signal transduction medicine.drug Signal Transduction |
Popis: | Background The endoribonuclease RNase-L is a type-I interferon (IFN)-regulated component of the innate immune response that functions in antiviral, antibacterial, and antiproliferative activities. RNase-L produces RNA agonists of RIG-I-like receptors, sensors of cytosolic pathogen-associated RNAs that induce cytokines including IFN-β. IFN-β and RIG-I-like receptors signaling mediate protective responses against experimental colitis and colitis-associated cancer and contribute to gastrointestinal homeostasis. Therefore, we investigated a role for RNase-L in murine colitis and colitis-associated cancer and its association with RIG-I-like receptors signaling in response to bacterial RNA. Methods Colitis was induced in wild type-deficient and RNase-L-deficient mice (RNase-L⁻/⁻) by administration of dextran sulfate sodium (DSS). Colitis-associated cancer was induced by DSS and azoxymethane (AOM). Histological analysis and immunohistochemistry were performed on colon tissue to analyze immune cell infiltration and tissue damage after induction of colitis. Expression of cytokines was measured by quantitative real-time-PCR and ELISA. Results DSS-treated RNase-L⁻/⁻ mice exhibited a significantly higher clinical score, delayed leukocyte infiltration, reduced expression of IFN-β, tumor necrosis factor α, interleukin-1β, and interleukin-18 at early times post-DSS exposure, and increased mortality as compared with wild-type mice. DSS/AOM-treated RNase-L⁻/⁻ mice displayed an increased tumor burden. Bacterial RNA triggered IFN-β production in an RNase-L-dependent manner and provided a potential mechanism by which RNase-L contributes to the gastrointestinal immune response to microbiota and protects against experimental colitis and colitis-associated cancer. Conclusions RNase-L promotes the innate immune response to intestinal damage and ameliorates murine colitis and colitis-associated cancer. The RNase-L-dependent production of IFN-β stimulated by bacterial RNA may be a mechanism to protect against gastrointestinal inflammatory disease. |
Databáze: | OpenAIRE |
Externí odkaz: |