Description cohérente en géométrie Riemannienne de l'ordre hamiltonien et du chaos avec métrique de Jacobi

Autor: Matteo Gori, Marco Pettini, Loris Di Cairano
Přispěvatelé: Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), CPT - E7 Systèmes dynamiques : théories et applications, Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Chaos: An Interdisciplinary Journal of Nonlinear Science
Chaos: An Interdisciplinary Journal of Nonlinear Science, American Institute of Physics, 2019, 29 (12), pp.123134. ⟨10.1063/1.5119797⟩
Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019, 29 (12), pp.123134. ⟨10.1063/1.5119797⟩
ISSN: 1054-1500
Popis: International audience; By identifying Hamiltonian flows with geodesic flows of suitably chosen Riemannian manifolds, it is possible to explain the origin of chaos in classical Newtonian dynamics and to quantify its strength. There are several possibilities to geometrize Newtonian dynamics under the action of conservative potentials and the hitherto investigated ones provide consistent results. However, it has been recently argued that endowing configuration space with the Jacobi metric is inappropriate to consistently describe the stability/instability properties of Newtonian dynamics because of the non-affine parametrization of the arc length with physical time. To the contrary, in the present paper, it is shown that there is no such inconsistency and that the observed instabilities in the case of integrable systems using the Jacobi metric are artefacts.
Databáze: OpenAIRE