FLNC Gene Splice Mutations Cause Dilated Cardiomyopathy
Autor: | Mary E. Sweet, Deborah M. Garrity, Rene L. Begay, August Martin, Charles A Tharp, Dobromir Slavov, Matthew R.G. Taylor, Katherine Gowan, Molly J. Zeller, Francesca Brun, Sharon L. Graw, Rasha Alnefaie, Neil Stafford, Teisha J. Rowland, Gianfranco Sinagra, Luisa Mestroni, D. Miani, Kenneth L. Jones |
---|---|
Přispěvatelé: | Begay, Rene L., Tharp, Charles A., Martin, August, Graw, Sharon L., Sinagra, Gianfranco, Miani, Daniela, Sweet, Mary E., Slavov, Dobromir B., Stafford, Neil, Zeller, Molly J., Alnefaie, Rasha, Rowland, Teisha J., Brun, Francesca, Jones, Kenneth L., Gowan, Katherine, Mestroni, Luisa, Garrity, Deborah M., Taylor, Matthew R. G. |
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
lcsh:Diseases of the circulatory (Cardiovascular) system heart failure Filamin Article 03 medical and health sciences medicine cardiovascular genetic splice cardiovascular diseases FLNC cardiovascular genetics Zebrafish Gene Exome sequencing Genetics biology Dilated cardiomyopathy dilated cardiomyopathy filamin C zebrafish Cardiology and Cardiovascular Medicine musculoskeletal system biology.organism_classification medicine.disease 030104 developmental biology lcsh:RC666-701 cardiovascular system Haploinsufficiency |
Zdroj: | JACC: Basic to Translational Science, Vol 1, Iss 5, Pp 344-359 (2016) |
ISSN: | 2452-302X |
DOI: | 10.1016/j.jacbts.2016.05.004 |
Popis: | OBJECTIVE: To identify novel dilated cardiomyopathy (DCM) causing genes, and to elucidate the pathological mechanism leading to DCM by utilizing zebrafish as a model organism. BACKGROUND: DCM, a major cause of heart failure, is frequently familial and caused by a genetic defect. However, only 50% of DCM cases can be attributed to a known DCM gene variant, motivating the ongoing search for novel disease genes. METHODS: We performed whole exome sequencing (WES) in two multigenerational Italian families and one US family with arrhythmogenic DCM without skeletal muscle defects, in whom prior genetic testing had been unrevealing. Pathogenic variants were sought by a combination of bioinformatic filtering and cosegregation testing among affected individuals within the families. We performed function assays and generated a zebrafish morpholino knockdown model. RESULTS: A novel filamin C gene splicing variant (FLNC c.7251+1 G>A) was identified by WES in all affected family members in the two Italian families. A separate novel splicing mutation (FLNC c.5669-1delG) was identified in the US family. Western blot analysis of cardiac heart tissue from an affected individual showed decreased FLNC protein, supporting a haploinsufficiency model of pathogenesis. To further analyze this model, a morpholino knockdown of the ortholog filamin Cb in zebrafish was created which resulted in abnormal cardiac function and ultrastructure. CONCLUSIONS: Using WES, we identified two novel FLNC splicing variants as the likely cause of DCM in three families. We provided protein expression and in vivo zebrafish data supporting haploinsufficiency as the pathogenic mechanism leading to DCM. |
Databáze: | OpenAIRE |
Externí odkaz: |