Integral representations and $L^\infty$ bounds for solutions of the Helmholtz equation on arbitrary open sets in $\mathbb{R}^2$ and $\mathbb{R}^3$

Autor: Xie, Wenzheng
Rok vydání: 1995
Předmět:
Zdroj: Differential Integral Equations 8, no. 3 (1995), 689-698
ISSN: 0893-4983
DOI: 10.57262/die/1369316516
Popis: We establish sharp $L^{\infty}$ bounds for functions defined on arbitrary open sets in $\Bbb R^2$ and $\Bbb R^3$, which vanish on the boundary and have $L^2$ Laplacians. All functions corresponding to the best possible constants are explicitly given. The proof is based on integral representations using the Green's function for the Helmholtz equation in arbitrary domains.
Databáze: OpenAIRE