Popis: |
The colossal rise in antimicrobial resistance has led to treatment failures and so mastitis has become cumbersome to treat. The objective of this study was to evaluate the antibacterial effect of non-antibiotic drug, atorvastatin in combination with antimicrobial, ampicillin against two commonly isolated bacterial species Staphylococcus spp and E. coli from bovine mastitis. Milk samples were collected from mastitis cows, visiting Veterinary Clinical Complex. Bacterial isolation was performed using Eosin Methylene Blue (EMB) agar and Mannitol Salt Agar (MSA), followed by characterization and identification by biochemical tests and gram staining. Genotypic confirmation was done by Polymerase Chain Reaction (PCR) with subsequent screening for resistant genes-mec A, blaTEM. Antibiotic Sensitivity Test (ABST) of the isolates against 12 different antimicrobials, atorvastatin only, and combination of atorvastatin with ampicillin were performed using Kirby-Bauer disc diffusion method. Minimum Inhibitory Concentration (MIC) of ampicillin alone and ampicillin in combination with atorvastatin were determined by modified microdilution method. Staphylococcus spp (77.5%) and E.coli (35%) were the two major pathogens isolated in the current study and multi-drug resistance was observed. Among the antimicrobials, the ampicillin showed 100% resistance against Staphylococcus spp and 85.71% resistance against E. coli. Atorvastatin did not display antibacterial effect as a sole agent but displayed synergistic antibacterial activity with ampicillin. There was an average increase in Minimum Inhibitory Concentration of ampicillin for E.coli and Staphylococcus spp isolates and atorvastatin decreased the Minimum Inhibitory Concentration of ampicillin in combination. The ampicillin shows more resistance against both Staphylococcus spp and E.coli, while atorvastatin improves the effect of ampicillin in-vitro. So, atorvastatin may be combined with ampicillin for the treatment of Gram-positive and Gram-negative infections. However, further studies are required to ascertain the exact mechanism of action of atorvastatin with respect to their antibacterial effect for them to be redeployed as an antimicrobial drug in the future. |