A comment on instantons and their fermion zero modes in adjoint QCD_2

Autor: Andrei V. Smilga
Přispěvatelé: Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: SciPost Physics
SciPost Physics, SciPost Foundation, 2021, 10 (6), pp.152. ⟨10.21468/SciPostPhys.10.6.152⟩
SciPost Physics, Vol 10, Iss 6, p 152 (2021)
ISSN: 2542-4653
DOI: 10.21468/SciPostPhys.10.6.152⟩
Popis: The adjoint 2-dimensional $QCD$ with the gauge group $SU(N)/Z_N$ admits topologically nontrivial gauge field configurations associated with nontrivial $\pi_1[SU(N)/Z_N] = Z_N$. The topological sectors are labelled by an integer $k=0,\ldots, N-1$. However, in contrast to $QED_2$ and $QCD_4$, this topology is not associated with an integral invariant like the magnetic flux or Pontryagin index. These instantons may admit fermion zero modes, but there is always an equal number of left-handed and right-handed modes, so that the Atiyah-Singer theorem, which determines in other cases the number of the modes, does not apply. The mod. 2 argument suggests that, for a generic gauge field configuration, there is either a single doublet of such zero modes or no modes whatsoever. However, the known solution of the Dirac problem for a wide class of gauge field configurations indicates the presence of $k(N-k)$ zero mode doublets in the topological sector $k$. In this note, we demonstrate in an explicit way that these modes are not robust under a generic enough deformation of the gauge background and confirm thereby the mod. 2 conjecture. The implications for the physics of this theory (screening vs. confinement issue) are briefly discussed.
Comment: minor changes, a reference added. 28 pages, 3 figures
Databáze: OpenAIRE