Feature visualization in comic artist classification using deep neural networks
Autor: | Kim Young-Min |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Information Systems and Management
lcsh:Computer engineering. Computer hardware Computer Networks and Communications Computer science lcsh:TK7885-7895 02 engineering and technology Input format Comics Convolutional neural network lcsh:QA75.5-76.95 020204 information systems Deep neural networks 0202 electrical engineering electronic engineering information engineering Artistic styles lcsh:T58.5-58.64 business.industry lcsh:Information technology Pattern recognition Visualization ComputingMethodologies_PATTERNRECOGNITION Hardware and Architecture Analytics Comic classification Feature visualization 020201 artificial intelligence & image processing Convolutional neural networks Artificial intelligence lcsh:Electronic computers. Computer science F1 score business Classifier (UML) Information Systems |
Zdroj: | Journal of Big Data, Vol 6, Iss 1, Pp 1-18 (2019) |
ISSN: | 2196-1115 |
DOI: | 10.1186/s40537-019-0222-3 |
Popis: | Deep neural networks have become a standard framework for image analytics. Besides the traditional applications, such as object classification and detection, the latest studies have started to expand the scope of the applications to include artworks. However, popular art forms, such as comics, have been ignored in this trend. This study investigates visual features for comic classification using deep neural networks. An effective input format for comic classification is first defined, and a convolutional neural network is used to classify comic images into eight different artist categories. Using a publicly available dataset, the trained model obtains a mean F1 score of 84% for the classification. A feature visualization technique is also applied to the trained classifier, to verify the internal visual characteristics that succeed in classification. The experimental result shows that the visualized features are significantly different from those of general object classification. This work represents one of the first attempts to examine the visual characteristics of comics using feature visualization, in terms of comic author classification with deep neural networks. |
Databáze: | OpenAIRE |
Externí odkaz: |