Pullulan-Coated Iron Oxide Nanoparticles for Blood-Stage Malaria Vaccine Delivery

Autor: Cordelia Selomulya, Liam Michael Powles, Kirsty Wilson, Charles Wai Chung Ma, Sue D. Xiang, Magdalena Plebanski, Ross L. Coppel
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Vaccines
Volume 8
Issue 4
Vaccines, Vol 8, Iss 651, p 651 (2020)
ISSN: 2076-393X
Popis: Vaccines against blood-stage malaria often aim to induce antibodies to neutralize parasite entry into red blood cells, interferon gamma (IFN&gamma
) produced by T helper 1 (Th1) CD4+ T cells or interleukin 4 (IL-4) produced by T helper 2 (Th2) cells to provide B cell help. One vaccine delivery method for suitable putative malaria protein antigens is the use of nanoparticles as vaccine carriers. It has been previously shown that antigen conjugated to inorganic nanoparticles in the viral-particle size range (~40&ndash
60 nm) can induce protective antibodies and T cells against malaria antigens in a rodent malaria challenge model. Herein, it is shown that biodegradable pullulan-coated iron oxide nanoparticles (pIONPs) can be synthesized in this same size range. The pIONPs are non-toxic and do not induce conventional pro-inflammatory cytokines in vitro and in vivo. We show that murine blood-stage antigen MSP4/5 from Plasmodium yoelii could be chemically conjugated to pIONPs and the use of these conjugates as immunogens led to the induction of both specific antibodies and IFN&gamma
CD4+ T cells reactive to MSP4/5 in mice, comparable to responses to MSP4/5 mixed with classical adjuvants (e.g., CpG or Alum) that preferentially induce Th1 or Th2 cells individually. These results suggest that biodegradable pIONPs warrant further exploration as carriers for developing blood-stage malaria vaccines.
Databáze: OpenAIRE