Contact-Free Mapping of Electronic Transport Phenomena of Polar Domains in SrMnO3 Films
Autor: | Eric Langenberg, Claus M. Schneider, Jakob Schaab, Laura Maurel, Hatice Doğanay, Daniel M. Gottlob, Dennis Meier, Slavomír Nemšák, José A. Pardo, I. P. Krug, Pedro A. Algarabel, Johanna Hackl, Muhammad Imtiaz Khan |
---|---|
Přispěvatelé: | Swiss National Science Foundation, Helmholtz-Zentrum Berlin for Materials and Energy, Gobierno de Aragón, Ministerio de Economía y Competitividad (España) |
Rok vydání: | 2016 |
Předmět: |
Materials science
Resolution (electron density) General Physics and Astronomy ComputingMilieux_LEGALASPECTSOFCOMPUTING Nanotechnology 02 engineering and technology Electron 021001 nanoscience & nanotechnology 01 natural sciences Characterization (materials science) Data acquisition Nanolithography Data_GENERAL 0103 physical sciences ddc:530 Electronics 010306 general physics 0210 nano-technology Transport phenomena Nanoscopic scale ComputingMilieux_MISCELLANEOUS |
Zdroj: | Zaguán. Repositorio Digital de la Universidad de Zaragoza instname Digital.CSIC. Repositorio Institucional del CSIC Physical review applied 5(5), 054009 (2016). doi:10.1103/PhysRevApplied.5.054009 |
DOI: | 10.1103/PhysRevApplied.5.054009 |
Popis: | Under the terms of the Creative Commons Attribution license.-- et al. High-resolution mapping of electronic transport phenomena plays an increasingly important role for the characterization of ferroic domains and their functionality. At present, spatially resolved electronic transport data are commonly gained from local two-point measurements, collected in line-by-line scans with a conducting nanosized probe. Here, we introduce an innovative experimental approach based on low-energy electron microscopy. As a model case, we study polar domains of varying conductance in strained SrMnO3. By a direct comparison with conductive atomic force and electrostatic force microscopy, we reveal that the applied low-energy electron-microscopy experiment can be considered as an inverse I(V) measurement, providing access to the local electronic conductance with nanoscale resolution and short data-acquisition times in the order of 10-102 ms. Low-energy electrons thus hold yet unexplored application opportunities as a minimal-invasive probe for local electronic transport phenomena, opening a promising route towards spatially resolved, high-throughput sampling at the nanoscale. We thank HZB for the allocation of synchrotron beam time and we thankfully acknowledge financial support by HZB. Research at the ETH was financed in part by the SNF (Proposal No. 200021_149192). L. M., E. L., P. A. A., and J. A. P. acknowledge financial support from Ministerio de Economía y Competitividad under Project No. MAT2014-51982-C2 and Gobierno de Aragón under Project No. E26. |
Databáze: | OpenAIRE |
Externí odkaz: |