Spinor Bose-Einstein condensate interferometer within the undepleted pump approximation: Role of the initial state
Autor: | Doerte Blume, Q. Guan, Jianwen Jie |
---|---|
Rok vydání: | 2019 |
Předmět: |
Condensed Matter::Quantum Gases
Physics education.field_of_study Photon Spinor Population FOS: Physical sciences Quantum entanglement 01 natural sciences 010305 fluids & plasmas law.invention Fock space Interferometry Quantum Gases (cond-mat.quant-gas) Ultracold atom law Quantum mechanics 0103 physical sciences Condensed Matter - Quantum Gases 010306 general physics education Bose–Einstein condensate |
Zdroj: | Physical Review A. 100 |
ISSN: | 2469-9934 2469-9926 |
DOI: | 10.1103/physreva.100.043606 |
Popis: | Most interferometers operate with photons or dilute, non-condensed cold atom clouds in which collisions are strongly suppressed. Spinor Bose-Einstein condensates (BECs) provide an alternative route toward realizing three-mode interferometers; in this realization, spin-changing collisions provide a resource that generates mode entanglement. Working in the regime where the pump mode, i.e., the m=0 hyperfine state, has a much larger population than the side or probe modes (m=+1 and m=-1 hyperfine states), f=1 spinor BECs approximate SU(1,1) interferometers. We derive analytical expressions within the undepleted pump approximation for the phase sensitivity of such an SU(1,1) interferometer for two classes of initial states: pure Fock states and coherent spin states. The interferometer performance is analyzed for initial states without seeding, with single-sided seeding, and with double-sided seeding. The validity regime of the undepleted pump approximation is assessed by performing quantum calculations for the full spin Hamiltonian. Our analytical results and the associated dynamics are expected to guide experiments as well as numerical studies that explore regimes where the undepleted pump approximation makes quantitatively or qualitatively incorrect predictions. 9 figures (several subfigures) |
Databáze: | OpenAIRE |
Externí odkaz: |