Intragranular localization induced by softening crystal plasticity analysis of slip and kink bands localization modes from high resolutionFFT-simulations results
Autor: | Samuel Forest, Aldo Marano, Lionel Gélébart |
---|---|
Přispěvatelé: | CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre des Matériaux (CDM), Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Service des Recherches Métallurgiques Appliquées (SRMA), Département des Matériaux pour le Nucléaire (DMN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Centre des Matériaux (MAT), Centre National de la Recherche Scientifique (CNRS)-PSL Research University (PSL)-MINES ParisTech - École nationale supérieure des mines de Paris, MINES ParisTech - École nationale supérieure des mines de Paris |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Materials science
Polymers and Plastics [PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] Crystal plasticity Fast Fourier transform 02 engineering and technology Slip (materials science) Slip bands Plasticity [PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] 01 natural sciences PhD Corresponding Author's Institution: CEA Saclay [SPI]Engineering Sciences [physics] Lattice (order) [SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph] 0103 physical sciences Softening ComputingMilieux_MISCELLANEOUS 010302 applied physics Condensed matter physics Lüders band Metals and Alloys [SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph] 021001 nanoscience & nanotechnology Electronic Optical and Magnetic Materials Volume fraction Ceramics and Composites Kink bands Crystallite 0210 nano-technology Crystal plasticity / Intragranular localization / Slip bands / Kink bands / FFT simulations Intragranular localization FFT simulations Corresponding Author: Dr Lionel GELEBART |
Zdroj: | Acta Materialia Acta Materialia, 2018, 175, pp.262-275. ⟨10.1016/j.actamat.2019.06.010⟩ Acta Materialia, Elsevier, 2019, 175, pp.262-275. ⟨10.1016/j.actamat.2019.06.010⟩ Acta Materialia, Elsevier, 2018, 175, pp.262-275. ⟨10.1016/j.actamat.2019.06.010⟩ |
ISSN: | 1359-6454 |
Popis: | International audience; We investigate the ability of local continuum crystal plasticity theory to simulate intense slip localization at incipient plasticity observed experimentally in metals exhibiting softening mechanisms. A generic strain softening model is implemented within a massively parallel FFT solver framework to study intragranular strain localization throughout high resolution polycrystalline simulations. It is coupled to a systematic analysis strain localization modes: Equivalent plastic strain and lattice rotation fields are processed to create binary maps of slip and kink bands populations, estimate their volume fraction and mean strain level. High resolution simulations show the formation of an intragranular localization band network. The associated localization maps are used to identify accurately slip and kink bands populations and highlight the distinct evolution of kink bands, influenced by lattice rotation. Results highlight that the analysis of the nature of localization bands in numerical studies is fundamental to asses the validity of polycrystalline simulations. Indeed, it is evidenced that selection between slip or kink localization modes is only due to grain to grain incompatibilities as these two localization modes are equivalent in classical crystal plasticity models. As a result they predict the formation of a large amount of kink bands in contradiction with experimental observations of softening metals. We show that this holds for complex physics based models too. Hence, the use of classical crystal plasticity for strain localization simulation should be reconsidered in order to predict realistic localization modes. |
Databáze: | OpenAIRE |
Externí odkaz: |