Docosahexaenoic Acid and Eicosapentaenoic Acid Intakes Modulate the Association of FADS2 Gene Polymorphism rs526126 with Plasma Free Docosahexaenoic Acid Levels in Overweight Children
Autor: | Paul Tutac, Nicoleta Andreescu, Vlad Laurentiu David, Corina Paul, Alin Ionescu, Vlad Serafim, Maria Puiu, Costela Lacrimioara Serban, Alexandra Mihailescu, Mihai D. Niculescu, Cristian G. Zimbru, Diana-Andreea Tiugan, Iulian Velea, Adina Iuliana Ion |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Technology
medicine.medical_specialty QH301-705.5 QC1-999 FADS2 Linoleic acid pediatric obesity Single-nucleotide polymorphism Biology chemistry.chemical_compound Internal medicine medicine long chain polyunsaturated fatty acids (LC-PUFAs) General Materials Science Biology (General) QD1-999 Instrumentation Fluid Flow and Transfer Processes chemistry.chemical_classification Physics Process Chemistry and Technology General Engineering Fatty acid Engineering (General). Civil engineering (General) Eicosapentaenoic acid Computer Science Applications Chemistry Endocrinology chemistry FADS2 gene Docosahexaenoic acid Gene polymorphism TA1-2040 dietary intake Polyunsaturated fatty acid |
Zdroj: | Applied Sciences Volume 11 Issue 21 Applied Sciences, Vol 11, Iss 9845, p 9845 (2021) |
ISSN: | 2076-3417 |
DOI: | 10.3390/app11219845 |
Popis: | Polyunsaturated fatty acids are involved in a wide variety of biological functions. Linoleic acid and alpha-linolenic acid are two essential fatty acids that the body cannot synthesize. The conversion rates in the body depend on FADS2 genetic variants. Certain variations in this gene are directly responsible for the low levels and poor conversion efficiency of the delta-6 desaturase enzyme, resulting in low circulating levels of docosahexaenoic acid. In this study, we evaluated the impact of the rs526126 FADS2 gene polymorphism on fatty acid levels in a group of two hundred children (n = 95 males, n = 105 females) aged 7–18 years, with obesity defined by BMI > +2 SD. Fatty acid quantification was performed by LC-MS/MS while genotyping for genetic variants was performed using a custom-made hotspot sequencing panel of 55 SNPs. Our results suggest that rs526126 FADS2 gene polymorphism specifically impacts the plasma levels of free n-3 polyunsaturated fatty acids. Finally, the presence of the minor allele G of rs526126 could have beneficial effects, as it was associated with higher levels of free docosahexaenoic acid in plasma, especially in children with low n-3 intakes. |
Databáze: | OpenAIRE |
Externí odkaz: |