Cerberus: Exploring Federated Prediction of Security Events

Autor: Mohammad Naseri, Yufei Han, Enrico Mariconti, Yun Shen, Gianluca Stringhini, Emiliano De Cristofaro
Přispěvatelé: University College of London [London] (UCL), Confidentialité, Intégrité, Disponibilité et Répartition (CIDRE), CentraleSupélec-Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-SYSTÈMES LARGE ÉCHELLE (IRISA-D1), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria), NetApp, Department of Electrical and Computer Engineering [Boston University] (ECE), Boston University [Boston] (BU)
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: CCS '22-ACM SIGSAC Conference on Computer and Communications Security
CCS '22-ACM SIGSAC Conference on Computer and Communications Security, Nov 2022, Los Angeles CA, United States. pp.2337-2351, ⟨10.1145/3548606.3560580⟩
DOI: 10.1145/3548606.3560580⟩
Popis: International audience; Modern defenses against cyberattacks increasingly rely on proactive approaches, e.g., to predict the adversary’s next actions based on past events. Building accurate prediction models requires knowledge from many organizations; alas, this entails disclosing sensitive information, such as network structures, security postures, and policies, which might often be undesirable or outright impossible. In this paper, we explore the feasibility of using Federated Learning (FL) to predict future security events. To this end, we introduce Cerberus, a system enabling collaborative training of RecurrentNeural Network (RNN) models for participating organizations. The intuition is that FL could potentially offer a middle-ground between the non-private approach where the training data is pooled at a central server and the low-utility alternative of only training local models. We instantiate Cerberus on a dataset obtained from a major security company’s intrusion prevention product and evaluate it vis-à-vis utility, robustness, and privacy, as well as how participants contribute to and benefit from the system. Overall, our work sheds light on both the positive aspects and the challenges of using FL for this task and paves the way for deploying federated approaches to predictive security.
Databáze: OpenAIRE