Spectral action in Betti Geometric Langlands

Autor: Zhiwei Yun, David Nadler
Přispěvatelé: Massachusetts Institute of Technology. Department of Mathematics
Rok vydání: 2019
Předmět:
Zdroj: arXiv
ISSN: 1565-8511
0021-2172
DOI: 10.1007/s11856-019-1871-9
Popis: Let $X$ be a smooth projective curve, $G$ a reductive group, and $Bun_G(X)$ the moduli of $G$-bundles on $X$. For each point of $X$, the Satake category acts by Hecke modifications on sheaves on $Bun_G(X)$. We show that, for sheaves with nilpotent singular support, the action is locally constant with respect to the point of $X$. This equips sheaves with nilpotent singular support with a module structure over perfect complexes on the Betti moduli $Loc_{G^\vee}(X)$ of dual group local systems. In particular, we establish the "automorphic to Galois" direction in the Betti Geometric Langlands correspondence -- to each indecomposable automorphic sheaf, we attach a dual group local system -- and define the Betti version of V. Lafforgue's excursion operators.
Comment: 30 pages
Databáze: OpenAIRE