Prescribing Gaussian curvature on surfaces with conical singularities and geodesic boundary

Autor: Luca Battaglia, Aleks Jevnikar, Zhi-An Wang, Wen Yang
Přispěvatelé: Battaglia, L., Jevnikar, A., Wang, Z. -A., Yang, W.
Rok vydání: 2022
Předmět:
Zdroj: Annali di Matematica Pura ed Applicata (1923 -). 202:1173-1185
ISSN: 1618-1891
0373-3114
Popis: We study conformal metrics with prescribed Gaussian curvature on surfaces with conical singularities and geodesic boundary in supercritical regimes. Exploiting a variational argument, we derive a general existence result for surfaces with at least two boundary components. This seems to be the first result in this setting. Moreover, we allow to have conical singularities with both positive and negative orders, that is cone angles both less and greater than $$2\pi$$ 2 π .
Databáze: OpenAIRE