Tissue engineered in-vitro vascular patch fabrication using hybrid 3D printing and electrospinning

Autor: Isabel Mayoral, Elisa Bevilacqua, Gorka Gómez, Abdelkrim Hmadcha, Ignacio González-Loscertales, Esther Reina, Julio Sotelo, Antonia Domínguez, Pedro Pérez-Alcántara, Younes Smani, Patricia González-Puertas, Ana Mendez, Sergio Uribe, Tarik Smani, Antonio Ordoñez, Israel Valverde
Přispěvatelé: Instituto de Salud Carlos III, European Commission, Asociación Española de Pediatría, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Fondo Nacional de Desarrollo Científico y Tecnológico (Chile), Universidad de Sevilla. Departamento de Ingeniería Mecánica y Fabricación, Universidad de Sevilla. Departamento de Farmacología, Pediatría y Radiología, Universidad de Sevilla. Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla. TEP111: Ingeniería mecánica, Universidad de Sevilla. CTS200: Transplante corazón. Conservación corazón donante.
Rok vydání: 2022
Předmět:
mesenchymal stem cells
MSC

extracellular matrix
ECM

vascular smooth muscle cells
VSMC

Biomedical Engineering
anti-fibroblast specific protein 1
FSP1

Bioengineering
wall shear stress
WSS

Vascular graft
Biomaterials
Endothelin Receptor B
ETB

tissue engineering vascular grafts
TEVG

Three-dimensional
3D

Reverse Transcription
Rt

Tissue engineering
Molecular Biology
derived VSMC
dVSMC

anti-cluster of differentiation 31
CD31

Electrospinning
Endothelin Receptor A
ETA

platelet-derived growth factor composed by two beta chains
PDGF-BB

transforming growth factor beta 1
TGFβ-1

Cell Biology
3D printing
computed tomography
CT

bone morphogenetic protein
BMP4

computation fluid dynamic
CFD

western blotting
WB

anti-smooth muscle protein 22
SM-22

fused deposition modelling
FDM

Mesenchymal stem cells
room temperature
RT

endothelin-1
ET-1

anti-alpha-smooth muscle actin
α-SMA

Biotechnology
Zdroj: Digital.CSIC. Repositorio Institucional del CSIC
instname
Popis: Three-dimensional (3D) engineered cardiovascular tissues have shown great promise to replace damaged structures. Specifically, tissue engineering vascular grafts (TEVG) have the potential to replace biological and synthetic grafts. We aimed to design an in-vitro patient-specific patch based on a hybrid 3D print combined with vascular smooth muscle cells (VSMC) differentiation. Based on the medical images of a 2 months-old girl with aortic arch hypoplasia and using computational modelling, we evaluated the most hemodynamically efficient aortic patch surgical repair. Using the designed 3D patch geometry, the scaffold was printed using a hybrid fused deposition modelling (FDM) and electrospinning techniques. The scaffold was seeded with multipotent mesenchymal stem cells (MSC) for later maturation to derived VSMC (dVSMC). The graft showed adequate resistance to physiological aortic pressure (burst pressure 101 ​± ​15 ​mmHg) and a porosity gradient ranging from 80 to 10 ​μm allowing cells to infiltrate through the entire thickness of the patch. The bio-scaffolds showed good cell viability at days 4 and 12 and adequate functional vasoactive response to endothelin-1. In summary, we have shown that our method of generating patient-specific patch shows adequate hemodynamic profile, mechanical properties, dVSMC infiltration, viability and functionality. This innovative 3D biotechnology has the potential for broad application in regenerative medicine and potentially in heart disease prevention.
This research was funded by ​Instituto de Salud Carlos III ​through the projects ​PI17/01409, PT20/00069 (Plataforma ISCIII de Biobancos y Biomodelos) and ​PI20/00467 ​(Co-funded by European Regional Development Fund/European Social Fund ​“A way to make Europe"/"Investing in your future”) ​and by the Foundation ​‘Menudos Corazones to help children with heart disease' and the Spanish Society of Paediatric Cardiology and Congenital Heart Disease (SECPCC), grant number ​‘Menudos Corazones 2020’. This work was also supported by the Spanish Ministry of Economy and Competitiveness (PID2019-104084GB-C22) and ANID – Millennium Science Initiative Program – ICN2021_004 and ANID – Millennium Science Initiative Program – NCN17_129, ANID FONDECYT de Iniciación en Investigación #11200481, ANID FONDECYT #1181057.
Databáze: OpenAIRE